
Cache and Message Broker
for Microservices
Speed up and simplify microservice applications
using Redis Enterprise

Solution Brief

© 2023 Redis

Redis Solution Brief / Cache and Message Broker for Microservices

2

© 2023 Redis

Redis Enterprise was built with many of the core principles that guide microservice architectures:
agility, resilience, scalability, and flexibility. This alignment makes Redis Enterprise an ideal
caching and asynchronous messaging solution for microservice applications.

But Redis Enterprise does more than align with the strengths of microservices. It also helps to
overcome three microservice challenges: complexity, eventual consistency, and latency.

What are microservices?
A microservice architecture breaks an application
into a collection of decoupled, lightweight services.
Each microservice is built around a specific business
context—a goal, focus, or problem area—known as its
domain. That practice permits domain experts to create
services that support their business logic needs.

Individual development teams are empowered to own
and operate their specific microservices. Each service is
isolated around its domain context so that each team is
responsible for choosing the technology stack that best
fits that domain. This ensures that each microservice
is individually deployable, scalable, resilient, and fully
owned by each team.

Microservices benefits

The agile and bounded nature of microservice
architecture brings significant advantages.
The benefits include:

•	 Team-empowerment: Small, independent
teams can quickly deploy code to adapt to
changing conditions

•	 Flexibility: Each service is built with the
technology that best fits its unique needs

•	 Reusability: Modular code can be
applied for multiple purposes, which enables
faster development

•	 Isolation: Application service components
are individually operable and scalable, with fault
isolation to prevent failure from one microservice
impacting another

Key microservices challenges

Despite their many benefits, microservice architectures
have drawbacks. The most critical challenges are:

•	 Increased complexity
A multitude of small and independent services means
more services to manage, monitor, and maintain. Each
microservice is operated independently yet must
communicate with others. Microservices often require
unique data models to support application needs,
each of which may require its own database or data
management solution to support.

•	 Eventual consistency
Data in one microservice may need to be accessed by
another service. Data consistency must be maintained
as data is shared and processed among dozens or even
hundreds of individual microservices.

•	 Latency
Each independent service communicates via API
calls. Calls to a multitude of different services
introduces the problem of network latency, which
may cause large, complex microservice applications
to face issues of slow response time. In addition,
databases within each microservice may not be fast
enough to meet requirements.

Isolation is a key microservice principle.
It calls for completely decoupled code,
teams, databases, and deployment
cycles. The goal is to increase
scalability, agility, and fault isolation
in order to produce fast, resilient
applications. Each of these isolated
services is operated by an empowered
team that can act quickly to deploy new
features or to respond quickly to issues.

Redis Solution Brief / Cache and Message Broker for Microservices

3

© 2023 Redis

Caching delivers fast
and consistent data to
microservices
Performance always matters, but data performance is
especially critical to microservice applications. Caching
can counteract the network latency that microservices
produce as a result of the multiple API calls required for
interservice communication. Decreasing data latency by
using caching can give you back critical response time.

Caching is also an excellent way to distribute data
that is shared by multiple domains from a system of
record without breaking the scope of each individual
microservice domain context.

How Redis Enterprise
works with microservice
caching
Microservice caches typically implement one of the
following patterns based on the scope of data access
across the architecture:

•	 API gateway caching for globally shared data that
must be accessed by all microservices (session
data, authentication tokens, etc.)

•	 Command Query Responsibility Segregation
(CQRS) for data shared by multiple microservices,
but not needed by all at the global level (cross-
domain data)

•	 Query caching for data within a single microservice
(domain-specific)

API GATEWAY CACHING

Cache globally shared user
session and authentication data
at the API gateway

Microservice applications often cache globally accessed
data at the API gateway level to distribute and speed up
data access by the entire underlying architecture. One
example is caching session and authentication data.
This approach makes frequently needed session data

available in real time to all services. Doing so
reduces application latency without breaking
the bounds of each microservice’s individual
business context.

When a user logs in, Redis Enterprise’s cache
stores the session data (such as user ID or
preferences) or authentication status (such as
permissions). This data is checked by the API
before the user interacts with any individual
microservice.

Customer story:
Online dating application

Let’s look at a customer example from a
popular online dating application. This
customer supports millions of users daily. In
a given day, the dating site’s users update
hundreds of thousands of photos, send
millions of messages, and match with tens of
millions of other users.

The application has several microservices,
each of which performs specific tasks.
Among the tasks:

•	 Manage user profiles (profile
microservice)

•	 Upload and manage photos (photo
microservice)

•	 List and manage matches with other
profiles (match microservice)

•	 Communicate with other users and
matches (communication microservice)

•	 Send notifications to users (alerts
microservice)

To reduce latency during user sessions,
this customer uses Redis Enterprise to
cache authentication data. The token is
pulled by the API gateway to authenticate
users and to relay key information about
the user’s session, such as user settings
and permissions.

Redis Solution Brief / Cache and Message Broker for Microservices

4

© 2023 Redis

Let's explore how a customer online dating
application can work using Redis Enterprise to
cache session data.

1.	 The client is the user interface. The application
is available on desktop, mobile web, Android,
and iOS.

2.	 A user logs in with their credentials.
3.	 Two tokens are created with user

authentication and session data: an access
token and a refresh token. These tokens are
cached in Redis Enterprise. The access token
contains authentication data, user information,
and permissions; the API uses it during the
user session. The token has a two-day time-
to-live (TTL). Once the authentication token
expires, a new access token is (or can be)
generated from a refresh token, which has
a longer TTL; it keeps users logged in if they
have enabled the “keep me logged in” setting.

4.	 The API gateway manages calls from the
many microservices that power the online
dating application. When a request is made,
the API gateway checks the session token
cached in Redis Enterprise to see if the
user is authenticated. Assuming the user is
authenticated, the API lets the transaction
occur, and it passes on session information
including user data and permissions.

5.	 Each individual microservice needs to
interact with the API gateway, whether to
manage dating profiles, upload and manage
pictures, view and manage dating matches,
send communications to other profiles, send
alerts to users, or display relevant news in a
newsfeed. In each case, the API gateway first
checks if a session is valid before it allows the
microservice call to go through.

How Redis Enterprise made a difference

•	 Using Redis Enterprise as a cache to store
user session and authentication data enabled
low-latency customer experiences by ensuring
that widely accessed data was available, with a
response time in sub milliseconds.

•	 Redis Enterprise’s scalability ensured that
application latency remained low even during
periods of peak user activity.

•	 As an outage of the cache at the API gateway
level would cause the entire system to go
down, all applications would be unreachable.
Redis Enterprise’s 99.999% uptime ensured that
no customer disruptions would occur due to
lost data.

Login API Gateway

Client

Profile Photos Matches Comms Alerts Newsfeed

1

2
4

3

 5
ENTERPRISE ENTERPRISE

Refresh
token

Access
token

Redis Solution Brief / Cache and Message Broker for Microservices

5

© 2023 Redis

CQRS PATTERN

Caching cross-domain shared data

Microservices need fast access to data. However,
this can be challenging when dozens or hundreds of
microservices try to read from the same slow disk-
based database. Cross-domain data needs to be
available to each microservice in real time, without
creating dependencies and breaking isolation.

CQRS is a critical pattern common to many customers
using Redis Enterprise as a cache in microservice
environments. It enables a service to write data to a
slower disk-based database, which remains the system
of record, while pre-fetching and caching that data
in Redis Enterprise for fast queries. Doing so makes
the information immediately available to additional
microservices that must read that data.

Customer example:
Payment processing
microservices application

Let’s consider a financial services microservice
application. The application has individual
microservices to perform specific tasks, such as:

•	 Approve or decline payments (captured in a
payment approval microservice)

•	 View payment history (payment history
microservice)

•	 Clear and settle payments (clearing and
settlement microservice)

•	 Update a customer’s risk profile (risk profile
microservice)

The payment history, clearing and settlement, and
risk profile microservices are each dependent upon
the data from the payment approval microservice.
That payment approval microservice must write

the outcome of each processed payment (whether
approved or declined) to the database that acts as
the application’s system of record.

A CQRS pattern helps to avoid the latency of all of
these microservices calling on a slow database.
Additionally, CQRS eliminates the dependency on
the database by replicating data and freeing each
microservice to operate, scale, and deploy code
independently.

Using the CQRS pattern, the microservice API
provides the payment approval microservice with
write-only access to the database so it can record
whether a transaction was approved or denied.

This data is then pre-fetched into a Redis Enterprise
cache with the Redis integrated Change Data
Capture (CDC) capability that is read and used
across domains by the payment history, clearing and
settlement, and risk profile microservices.

Microservice:
Payment Approval

Client

Microservice:
Payment History

API Gateway

ENTERPRISESystem of
Record

Eventual consistency

A CQRS Pattern

REDIS INTEGRATED CDC

Command
(Write)

Query
(Read)

Redis Solution Brief / Cache and Message Broker for Microservices

6

© 2023 Redis

Consider the process in a customer payment
processing application using Redis Enterprise
as a cache in a CQRS pattern:

1.	 The client is the user interface (mobile
application, web app, etc.).

2.	 The API gateway handles all communication
between the client and the microservice
applications.

3.	 The payment approval microservice
determines whether a payment is approved or
declined and then writes that decision to the
application database.

4.	 The application database is a persistent disk-
based SQL database acting as the system
of record for all payments. It contains the
customer’s approval status and metadata
associated with each payment, such as
date and account number. The API gateway
only allows writes to the payment approval
microservice; all others are read only.

5.	 The Redis Enterprise cache is pre-fetched
using the Redis integrated CDC capability with
payment approval data. New payments written
to the application database are replicated
to the Redis Enterprise cache with eventual
consistency.

6.	 The payment history microservice reads data
from Redis Enterprise to view payment dates,
status, and other metadata.

7.	 The clearing and settlement microservice
reads data from the Redis Enterprise cache. It
moves funds between a sender and recipient
account for transactions approved by the
payment approval microservice.

8.	 The risk profile microservice reads data
from the Redis Enterprise cache to update
customer risk profiles after a transaction is
approved or denied.

How Redis Enterprise made a difference

•	 Using Redis Enterprise as a cache reduced
application latency by ensuring that payment
approval was cached and available across
domains to downstream microservices in
sub milliseconds.

•	 Caching cross-domain data ensured that
the payment processing application could
eliminate critical business dependency on the
database. Each microservice could operate on
its own release cycle with autonomy without
compromising data integrity.

•	 The Redis integrated CDC capability transformed
the system of record data from a write-optimized
data structure (SQL table) to a read-optimized
data structure (Redis Enterprise cache) while
maintaining isolation.

•	 Because it could scale up to 200 million
operations/second, Redis Enterprise effortlessly
handled increases in application processing while
maintaining sub-millisecond latency.

•	 Redis Enterprise was also resilient enough to
ensure critical payment data wouldn’t be lost due
to cache outage.

•	 Everything got simpler and cheaper. Using a single
data management solution for caching and CDC
was far less complex than deploying multiple
different technology products that would require
integration effort.

RDBMS

API Gateway

Client

Payment
Approval

Payment
History

Clearing and
Settlement

Risk
Profile

1

2

4

3 6 7 8

 5

ENTERPRISE

Eventual consistency

WRITE READ READ READ

REDIS INTEGRATED CDC

Redis Solution Brief / Cache and Message Broker for Microservices

7

© 2023 Redis

QUERY CACHING
Query caching for data within a
single business context

Building a microservice architecture from the ground up
requires following the principle of domain-driven design
to split applications into isolated and logical areas of
focus. This approach typically leads architects to pursue
CQRS and globally shared data at the API gateway.

However, in many real-world scenarios enterprises do
not start with a blank slate. They must work around the
constraints of legacy architecture and technical debt.

For example, an existing relational database may already
support multiple microservices. While that database may
meet most of the organization’s needs, one particular
service may have issues meeting its performance
service level agreements. Instead of replatforming an
entire system, Redis Enterprise can simply be deployed
into the existing architecture using a cache-aside or
sidecar pattern by caching the results from the relational
database. With Redis Enterprise, each query cache can be
deployed in a multi-tenant cluster that provides physical
isolation to maintain domain independence.

This sidecar architecture uses the Redis Smart Cache
client library to standardize cache-aside patterns across
all the microservices that require query caching,
with no need to update code. This cache speeds up data
that an individual microservice needs within a single
domain context.

Data queries from the microservice are first sent to the
Redis Enterprise cache. If data is present, the results
are delivered (at sub-millisecond speed). If the data
does not exist in the cache, it is delivered by the primary
database and stored in the cache to lower the latency of
future requests.

Redis Smart Cache also provides the ability to monitor
the cache, thus providing insights into usage without the
need for a separate analytics tool.

Client

API Gateway

Microservice 1

Database 1

REDIS ENTERPRISE CLUSTER
ON KUBERNETES

Cache 1 Cache 2

Microservice 2

Database 2

Redis Smart Cache

Redis Solution Brief / Cache and Message Broker for Microservices

8

© 2023 Redis

How Redis Enterprise is
used for inter-service
communication between
microservices
Building loosely coupled microservices is an extremely
lightweight and rapid development process. However,
building inter-services communication patterns to
share state, events, and data between these services
is not as simple.

One easy and fast communication pattern is direct
(point-to-point) inter-service communication between
services, wherein you use RESTful HTTP or gRPC calls.
However, synchronous communication assumes
both endpoints are available. That contradicts the
paradigm of isolation and decoupling that is inherent in
microservice architectures, wherein the premise is that
a service can be unavailable at any time.

When you have hundreds of microservices, there is also
the issue of scale and complexity with implementing
retry logics. Hence you should avoid using direct,
synchronous communication unless there is a specific
use case that requires it.

The recommended pattern is to use an asynchronous
broker approach where each service connects a
centralized messaging system (a broker) – such as
generic message queues like RabbitMQ and Redis
queues (lists) – to complex Kafka event streams. In
an asynchronous approach, the service doesn’t wait
for the response coming from another service, thus
allowing for that service to be unavailable and respond
when recovered and embracing eventual consistency.

An alternative solution is to use Redis Streams, a native,
immutable, time-ordered log data structure in Redis
Enterprise, as a lightweight, event-driven, asynchronous
publish-subscribe message broker and event store.
In this pattern, a producer (one service) can publish
an event without awareness of whether any consumer
(another service) is listening. Consumers of that event
can react to it when they are ready or they can ignore
it altogether.

This ensures the microservice that is publishing
events remains decoupled from the microservice(s)
consuming them. The result is that there are no cross-
dependencies on availability and release cycles.

Redis Streams supports consumer groups, message
persistence, primary/secondary data replication
functions, varying delivery guarantees, and other
features that are similar to what Apache Kafka topic
partitions deliver. However, since you only need
a key to deploy Redis Streams, it is much easier
to set up than a Kafka Topic (you don't need an
expert administrator, for one). Along with Active-
Active capabilities and simple deployment, Redis
Streams is an ideal option for managing microservice
communication at scale.

Client

API Gateway

Microservice 1 Microservice n

PUBLISH

SUBSCRIBESUBSCRIBE

Redis Streams Message Broker

https://redis.com/blog/what-to-choose-for-your-synchronous-and-asynchronous-communication-needs-redis-streams-redis-pub-sub-kafka-etc-best-approaches-synchronous-asynchronous-communication/?utm_source=pdf-microservices-sb202303&utm_medium=referral

Redis Solution Brief / Cache and Message Broker for Microservices

9

© 2023 Redis

Redis Enterprise
makes microservice
applications faster
and easier to operate
Reduced operational complexity

Redis Enterprise offers simplified management to
reduce the operational complexity that comes with
microservice architectures. It enables you to easily
deploy and manage dozens to hundreds of multi-
tenant and multi-model caches, all in one data
platform.

Redis Enterprise caches can be customized for
each microservice based on durability, throughput,
persistence, and replication requirements. The same
data platform can also be used for inter-service
communication to simplify coding and to reduce the
number of tools needed. The ability to deploy and
manage individual caches based on the unique needs
of each domain plus act as message broker enables the
microservice principles of isolation, fast time to market,
and team empowerment.

Real-time speed for faster
microservices

Network latency and slow legacy databases can drag
down application performance. With sub-millisecond
performance for data queries and messaging, Redis
Enterprise provides a way to gain back much of the
time lost to greatly improve performance.

All the benefits of a full house
(without noisy neighbors)

A multi-tenant architecture allows individual resources
(databases or virtual machines) to be shared by
multiple separate users. These users could be
individual customers or business units that share
access. Think of a single tenant system like a stand-
alone home, while a multi-tenant one is like an
apartment: the building is shared but each tenant has
their own individual living space. Multi-tenancy brings
obvious benefits including cost efficiency, simplified
architecture, and better resource utilization.

However, multi-tenancy runs afoul of the microservice
practice of completely isolating individual application
components. Multi-tenant systems often run into
challenges competing for resources, and individual
services may overconsume a resource shared by other
microservices. This problem is commonly referred to
as a noisy neighbor.

Redis Enterprise gives you the best of both worlds:
the benefits of multi-tenancy with the level of isolation
that microservices require. Because its cluster
architecture provides isolation at every level, it avoids
noisy neighbors. As individual Redis processes are
single threaded, they are inherently bounded by,
at most, a single CPU. Redis Enterprise’s approach
solves the problem of isolation without the trade-off of
management complexity.

Redis Solution Brief / Cache and Message Broker for Microservices

10

© 2023 Redis

Redis Enterprise brings real-time speed for all your data needs

You can also use Redis Enterprise for other important tech
challenges. Extend real-time performance by using it beyond
caching, e.g., using it for event sourcing and as a lightweight primary
database to support individual microservices.

But that’s not all…

Want to learn more about
caching, using Streams
as a message broker in an
event sourcing pattern, and
deploying microservices on
Kubernetes?

Read the definitive guide to caching with Redis: Download the
Caching at Scale with Redis e-book.
Download now

Learn how to develop and operate a high-performance
microservice architecture with Redis in our Redis Microservice for
Dummies e-book.
Read now

Learn about event-driven streaming architectures and the
difference between Kafka and Redis Streams. Download the
Understanding Streams in Redis and Kafka—A Visual Guide e-book.
Download now

Learn how DevOps teams can easily manage and administer and
automatically deploy Redis clusters on Kubernetes platforms by
watching Deploying a Microservice Data Layer on Kubernetes
webinar.
Watch now

https://redis.com/docs/caching-at-scale-with-redis/?utm_source=pdf-microservices-sb202303&utm_medium=referral
https://redis.com/docs/redis-microservices-for-dummies/?utm_source=pdf-microservices-sb202303&utm_medium=referral
https://redis.com/docs/understanding-streams-in-redis-and-kafka-a-visual-guide/?utm_source=pdf-microservices-sb202303&utm_medium=referral
https://redis.com/events-and-webinars/deploying-a-microservice-data-layer-on-kubernetes/?utm_source=pdf-microservices-sb202303&utm_medium=referral

