
Quastor Archives

These are the full archives of the Quastor Newsletter until July of 2023.

Check out the website for more recent archives.

You can sign up to get the newsletter weekly here.

http://www.quastor.org
https://blog.quastor.org/
http://www.quastor.org

Table of Contents

Quastor Archives 1

Table of Contents 2

Measuring Availability 9

Service Level Agreement 9

Availability 11

Latency 13

Other Metrics 14

Load Balancing Strategies 15

The Purpose of Load Balancers 15

Load Balancer vs. API Gateway 16

Types of Load Balancers 16

Load Balancing Algorithms 19

Scaling Relational Databases with Replicas and Sharding 21

Optimizations 21

Vertical Scaling 21

Adding Read Replicas 22

Sharding 23

Horizontal Partitioning Strategies 24

Backend Caching 28

Downsides of Caching 29

Implementing Caching 30

Cache Aside 30

Write Through 31

Cache Eviction 32

API Gateways 34

API Gateway use cases 35

API Gateway Lifecyle 36

History of API Gateways 39

API Gateways 40

Real World Uses 41

Zuul, Netflix’s API Gateway 41

TAG, Tinder API Gateway 42

An Introduction to Compilers and LLVM 43

Introduction to Classical Compiler Design 44

LLVM’s Implementation of the Three-Phase Design 46

HowWhatsApp served 1 billion users with only 50 engineers. 50

Engineering Culture 50

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Tech Stack 53

The Architecture of Uber's API gateway 56

How does the API Gateway work 56

How a request flows through the API gateway 57

Map Reduce Explained 60

History behind Map Reduce 60

Map and Reduce functions 61

How MapReduce Works 62

Building a basic Storage Engine 67

Log Structured Storage Engines 68

Robinhood’s Tech Stack 72

Robinhood’s Tech Stack 72

PaaS vs. DIY 72

How Robinhood Scaled 73

How Slack Designs APIs 74

Slack’s API Design Principles 75

How Notion sharded their Postgres Database 77

When to Shard? 77

Application-Level vs. Managed 78

Shard Key 78

How many Shards? 79

Database Migration 79

Google File System 80

Goals of GFS 80

Design of GFS 81

GFS Mutations 83

GFS Interface 84

Scaling an API with Rate Limiters 85

Building a rate limiter in practice 87

GitHub's transition fromMonolith to Microservices 88

History 88

Pros of a Monolith architecture 89

Pros of a Microservice architecture 89

How to break up the Monolith 90

Separating Data 90

Separating Services 91

Partitioning GitHub’s Relational Database 93

Virtual Partitions 94

Moving Data without Downtime 96

LinkedIn’s journey of scaling HDFS to 1 Exabyte 97

Replicating NameNodes 98

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Java Tuning 101

Other Optimizations 102

Building a Static Analysis tool at Slack 104

How Facebook Encodes Videos 109

Facebook’s Process for Encoding Videos 111

How Uber Migrated their Financial Transaction Database from DynamoDB to

Docstore 114

Choosing Docstore 116

DynamoDB to Docstore Migration 117

An Introduction to Big Data Architectures 120

Components of a Big Data Architecture 120

Lambda Architecture 122

How Stripe uses Similarity Clustering to catch Fraud Rings 124

Merchant Fraud at Stripe 124

Using Similarity Clustering to Reduce Merchant Fraud 125

Switching from Heuristics-based to an ML model 125

Building the ML Model 126

Using gradient-boosted decision trees 126

Prediction Use 127

Evolving LinkedIn’s Analytics Tech Stack 128

Data Migration 130

The New System 131

Etsy’s Journey to TypeScript 133

Strategies for Adoption 133

Gradually Migrate to Strict TypeScript 134

Make sure Utilities and Tools have good TypeScript support 135

Educate and Onboard Engineers Team by Team 135

How Khan Academy rewrote their Backend 137

Brief Overview of Go 138

Monolith to Services 139

The Implementation 140

Final Results 142

Redesigning Etsy’s Machine Learning Platform 143

The design of ML Platform V2 144

Outcomes 146

How VideoWorks 148

Playback 148

HLS 149

MP4 &WebM 150

Delivery 151

How Grab Processes Billions of Events in Real Time 153

The Architecture of Trident 154

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Scalability 155

Scaling the Server Level 156

Scaling the Data Store Level 157

Lessons Learned from Implementing Payments in the DoorDash Android App 159

Why DoorDash migrated from Python to Kotlin 162

Summary 162

Clock Synchronization and NTP 166

Building Faster Indexing with Apache Kafka and Elasticsearch 169

DoorDash’s Problem with Search Indexing 169

The New System 170

Incremental Indexing 171

Indexing Human Operator Changes 171

Indexing ETL data 172

Sending documents to Elasticsearch 172

Results 173

The Architecture of Databases 174

Observability at Twitter 178

The Legacy Logging System 178

Transitioning to Splunk 180

Challenges of running Splunk 182

Language Implementations Explained 184

Languages vs. Language Implementations 184

The Architecture of a Language Implementation 185

Front end 186

Middle End 187

Back End 188

Airbnb’s Architecture 189

Monolith (2008 - 2017) 189

Microservices (2017 - 2020) 190

Micro + Macroservices (2020 -) 191

The Architecture of Apache Spark 193

History of MapReduce 193

How MapReduce Works 194

Issues with MapReduce 194

Creation of Apache Spark 195

Overview of Spark 196

Why is Spark Fast? 197

Architecture of Spark 198

Leader-Worker Architecture 198

Resilient Distributed Dataset 199

Directed Acyclic Graph 200

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Architecture 204

Bloom Filters 206

Scaling an API with Rate Limiters 209

Building a rate limiter in practice 211

Serving Feature Data at Scale 212

Feature Definitions 213

Feature Data Ingestion 213

Feature Processing and Retrieval 214

Etsy’s Journey to TypeScript 215

Strategies for Adoption 215

Gradually Migrate to Strict TypeScript 217

Make sure Utilities and Tools have good TypeScript support 217

Educate and Onboard Engineers Team by Team 218

Managing Infrastructure with Code at Shopify 219

Sharding Databases at Quora 222

MySQL at Quora 222

Splitting by Table 223

Splitting Individual Tables 224

Key Decisions around Sharding 225

How Quora Shards Tables 226

Video Delivery at Twitter with HTTP Live Streaming 229

Site Reliability Engineering at BlackRock 233

Architecture of the Telemetry Platform 233

Alerting Strategy 235

How Clubhouse Recommends Rooms 237

Complexities 239

Continuous Delivery at Airbnb 241

How BuzzFeed optimized their Frontend 245

Optimizations 248

Result 249

The Evolution of Benchling’s Search Architecture 250

How the BBC uses Serverless 256

The BBC’s Backend 257

Optimizing Performance 259

How Twitch does Chaos Engineering 262

How PayPal uses Graph Databases for Fraud Prevention 267

Properties 269

Graph Database 270

An Overview of PayPal’s Graph Platform 271

Real Time Graph Database 272

Client Side Localization at Lyft 274

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

How Airbnb rebuilt their Payments System 279

Unified Entry Point 281

Improving Performance 282

Dropbox's Asynchronous Task Framework 285

ATF Architecture 287

The Architecture of Facebook's distributed Key Value store 290

Data Model 291

Architecture 291

Consistency 293

Challenges with Distributed Systems 295

Types of Distributed Systems 295

Complexity 296

Handling Failure Modes and Testing 297

Distributed Bugs are Often Latent 298

Distributed Bugs Spread Epidemically 298

How PayPal solved their Thundering Herd Problem 300

The Problem 301

Exponential Backoff 303

Jitter 304

How Twitch Processes Millions of Video Streams 306

Creating Intelligest 308

How Image Search works at Dropbox 310

Dropbox’s Approach 311

Image Classification 311

Word Vectors 312

Production Architecture 312

How Instagram Suggests New Content 314

How Instagram does Candidate Generation 315

Cold Start Problem 316

How Instagram does Candidate Selection 316

How Snapchat Works 318

How Netflix Implemented Load Shedding 321

Define a Request Taxonomy 323

Load Shedding Algorithm 325

Validating Assumptions using Chaos Testing 326

The Architecture of Facebook’s Distributed Message Queue 328

FOQs Use Cases 328

Building a Distributed Priority Queue 329

Enqueue 330

Dequeue 331

Ack/Nack 332

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

HowMixpanel Fixed their Load Balancing Problem 334

A Skew Problem 336

Cause for Skew 336

The Power of 2-Choices 337

How Pinterest Load Tests Their Database 338

Setting up the Testing Environment 340

Evaluating Query Load 342

Handling Increase in Data Ingestion 343

Handling Increase in Data Volume 343

Results 344

How Facebook Transfers Exabytes of Data Across Their Data Centers Globally 345

Hierarchical caching 347

Bittorrent 347

Owl 348

Results 350

How Dropbox maintains 3 Nines of Availability 352

Detection 353

Diagnosis 353

Recovery 354

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Measuring Availability

When you’re building a system, an incredibly important consideration you’ll have to

deal with is availability.

You’ll have to think about

● What availability guarantees do you provide to your end users

● What availability guarantees do dependencies you’re using provide to you

These availability goals will affect how you design your system and what tradeoffs you

make in terms of redundancy, autoscaling policies, message queue guarantees, and

much more.

Service Level Agreement

Availability guarantees are conveyed through a Service Level Agreement (SLAs).

Services that you use will provide one to you and you might have to give one to your end

users (either external users or other developers in your company who rely on your API).

Here’s some examples of SLAs

● Google Cloud Compute Engine SLA

● AWS RDS Service Level Agreement

● Azure Kubernetes Service SLA

These SLAs provide monthly guarantees in terms of Nines. We’ll discuss this shortly. If

they don’t meet their availability agreements, then they’ll refund a portion of the bill.

Service Level Agreements are composed of multiple Service Level Objectives (SLOs). An

SLO is a specific target level objective for the reliability of your service.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Nsb3VkLmdvb2dsZS5jb20vY29tcHV0ZS9zbGEiLCJwb3N0X2lkIjoiOWI3OTFmNGUtYjMwNS00NzRmLWJhYjQtNzAwZmEyMWU2MTY5IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc4NC42NDgsImlzcyI6Im9yY2hpZCJ9.BZhH_tV0gCYwIZi683YVt3d9rtl5T6FSuUrUy78mYjs
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2F3cy5hbWF6b24uY29tL3Jkcy9zbGEvIiwicG9zdF9pZCI6IjliNzkxZjRlLWIzMDUtNDc0Zi1iYWI0LTcwMGZhMjFlNjE2OSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM3ODQuNjQ4LCJpc3MiOiJvcmNoaWQifQ.zZ8pbvmPOv9CvWriabSKFAUB95fF_-yQfyIw6f7dOGE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2F6dXJlLm1pY3Jvc29mdC5jb20vZW4tdXMvc3VwcG9ydC9sZWdhbC9zbGEva3ViZXJuZXRlcy1zZXJ2aWNlL3YxXzEvIiwicG9zdF9pZCI6IjliNzkxZjRlLWIzMDUtNDc0Zi1iYWI0LTcwMGZhMjFlNjE2OSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM3ODQuNjQ4LCJpc3MiOiJvcmNoaWQifQ.2ToAsXXCrLvRdp2arSHbEPvs7-ehTRI5CjZ928S5OJY
http://www.quastor.org

Examples of possible SLOs are

● be available 99.9% of the time, with a maximum allowable downtime of ~40

minutes per month.

● respond to requests within 100 milliseconds on average, with no more than

1% of requests taking longer than 200 milliseconds to complete (P99 latency).

● handle 1,500 requests per second during peak periods, with a maximum

allowable response time of 200 milliseconds for 99% of requests.

SLOs are based on Service Level Indicators (SLI), which are specific measures

(indicators) of how the service is performing.

The SLIs you set will depend on the service that you’re measuring. For example, you

might not care about the response latency for a batch logging system that collects a

bunch of logging data and transforms it. In that scenario, you might care more about the

recovery point objective (maximum amount of data that can be lost during the recovery

from a disaster) and say that no more than 12 hours of logging data can be lost in the

event of a failure.

The Google SRE Workbook has a great table of the types of SLIs you’ll want depending

on the type of service you’re measuring.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3NyZS5nb29nbGUvd29ya2Jvb2svaW1wbGVtZW50aW5nLXNsb3MvI3NsaXMtZm9yLWRpZmZlcmVudC10eXBlcy1vZi1zZXJ2aWNlcyIsInBvc3RfaWQiOiI5Yjc5MWY0ZS1iMzA1LTQ3NGYtYmFiNC03MDBmYTIxZTYxNjkiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzNzg0LjY0OCwiaXNzIjoib3JjaGlkIn0.6aIq2l3fUqOYinqzhJTV3144A27WJxSa84cY3puOlCg
http://www.quastor.org

Availability

Every service will need a measure of availability. However, the exact definition will

depend on the service.

You might define availability using the SLO of "successfully responds to requests within

100 milliseconds". As long as the service meets that SLO, it'll be considered available.

Availability is measured as a proportion, where it’s time spent available / total time.

You have ~720 hours in a month and if your service is available for 715 of those hours

then your availability is 99.3%.

It is usually conveyed in nines, where the nine represents how many 9s are in the

proportion.

If your service is available 92% of the time, then that’s 1 nine. 99% is two nines. 99.9% is

three nines. 99.99% is four nines, and so on. The gold standard is 5 Nines of availability,

or available at least 99.999% of the time.

When you talk about availability, you also need to talk about the unit of time that you’re

measuring availability in. You can measure your availability weekly, monthly, yearly,

etc.

If you’re measuring it weekly, then you give an availability score for the week and that

score resets every week.

So, if you measure downtime monthly, then you must have less than 40 minutes of

downtime to have 3 Nines.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

So, let’s say it’s the week of May 1rst and you have 5 minutes of downtime that week. For

the week of May 7th, your service has 30 seconds of downtime. Then you’ll have 3 Nines

of availability for the week of May 1rst and 4 Nines of availability for the week of May

7th.

However, if you were measuring availability monthly, then the moment you had that 5

minutes of downtime in the week of May 1rst, your availability for the month would’ve

been at most 3 Nines. Having 4 Nines means less than 4 minutes, 21 seconds of

downtime, so that would’ve been impossible for the month.

Here’s a calculator that shows daily, weekly, monthly and yearly availability calculations

for the different Nines.

Most services will measure availability monthly. At the end of every month, the

availability proportion will reset. You can read more about choosing an appropriate time

window here in the Google SRE workbook.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3VwdGltZS5pcy8iLCJwb3N0X2lkIjoiOWI3OTFmNGUtYjMwNS00NzRmLWJhYjQtNzAwZmEyMWU2MTY5IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc4NC42NDgsImlzcyI6Im9yY2hpZCJ9.gFmWvMep9KRDStF5CCAjJSaB7IVE9ZFLOwybS4GBkwY
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3NyZS5nb29nbGUvd29ya2Jvb2svaW1wbGVtZW50aW5nLXNsb3MvI2Nob29zaW5nLWFuLWFwcHJvcHJpYXRlLXRpbWUtd2luZG93IiwicG9zdF9pZCI6IjliNzkxZjRlLWIzMDUtNDc0Zi1iYWI0LTcwMGZhMjFlNjE2OSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM3ODQuNjQ5LCJpc3MiOiJvcmNoaWQifQ.2GSUV5hULYHsSxs06zuYt2P6RvJMBkQoxfRAtYfYOPM
http://www.quastor.org

Latency

An important way of measuring the availability of your system is with the latency. You’ll

frequently see SLOs where the system has to respond within a certain amount of time in

order to be considered available.

It’s important to distinguish between the latency of a successful request vs. an

unsuccessful one. For example, if your server has some configuration error (or some

other error), it might immediately respond to any HTTP request with a 500. Computing

these latencies with your successful responses will throw off the calculation.

There’s different ways of measuring latency, but you’ll commonly see two ways

● Averages - Take the mean or median of the response times. If you’re using the

mean, then tail latencies (extremely long response times due to network

congestion, errors, etc.) can throw off the calculation.

● Percentiles - You’ll frequently see this as P99 or P95 latency (99th percentile

latency or 95th percentile latency). If you have a P99 latency of 200 ms, then

99% of your responses are sent backwithin 200 ms.

Latency will typically go hand-in-hand with throughput, where throughput measures the

number of requests your system can process in a certain interval of time (usually

measured in requests per second). As the requests per second goes up, the latency will

go up as well. If you have a sudden spike in requests per second, users will experience a

spike in latency until your backend’s autoscaling kicks in and you get more machines

added to the server pool.

You can use load testing tools like JMeter, Gatling and more to put your backend under

heavy stress and see how the average/percentile latencies change.

The high percentile latencies (have a latency that is slower than 99.9% or 99.99% of all

responses) might also be important to measure, depending on the application. These

latencies can be caused by network congestion, garbage collection pauses, packet loss,

contention, and more.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RldmVsb3Blci5tb3ppbGxhLm9yZy9lbi1VUy9kb2NzL1dlYi9IVFRQL1N0YXR1cy81MDAiLCJwb3N0X2lkIjoiOWI3OTFmNGUtYjMwNS00NzRmLWJhYjQtNzAwZmEyMWU2MTY5IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc4NC42NDksImlzcyI6Im9yY2hpZCJ9.r8AUE0z_VwkNSiBumhTQH3uXJp91ypFA5bHproRRdbs
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9BcGFjaGVfSk1ldGVyIiwicG9zdF9pZCI6IjliNzkxZjRlLWIzMDUtNDc0Zi1iYWI0LTcwMGZhMjFlNjE2OSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM3ODQuNjQ5LCJpc3MiOiJvcmNoaWQifQ.sGjXAmtQHqouldmyJsEOLoZmle6TJ1MPgWWd5Afn220
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9HYXRsaW5nXyhzb2Z0d2FyZSkiLCJwb3N0X2lkIjoiOWI3OTFmNGUtYjMwNS00NzRmLWJhYjQtNzAwZmEyMWU2MTY5IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc4NC42NDksImlzcyI6Im9yY2hpZCJ9.vlPowdRhBBxqYc6i6dt2Ofn5La0l98wrpfZkoT223-0
http://www.quastor.org

To track tail latencies, you’ll commonly see histograms and heat maps utilized.

Other Metrics

There’s an infinite number of other metrics you can track, depending on what your use

case is. Your customer requirements will dictate this.

Some other examples of commonly tracked SLOs are MTTR, MTBM and RPO.

MTTR - Mean Time to Recovery measures the average time it takes to repair a failed

system. Given that the system is down, how long does it take to become operational

again? Reducing the MTTR is crucial to improving availability.

MTBM - Mean Time Between Maintenance measures the average time between

maintenance activities on your system. Systems may have scheduled downtime (or

degraded performance) for maintenance activities, so MTBMmeasures how often this

happens.

RPO - Recovery Point Objective measures the maximum amount of data that a company

can lose in the event of a disaster. It’s usually measured in time and it represents the

point in time when the data must be restored in order to minimize business impact. If a

company has an RPO of 2 hours, then that means that the company can tolerate the loss

of data up to 2 hours old in the event of a disaster. RPO goes hand-in-hand with MTTR,

as a short RPO means that the MTTR must also be very short. If the company can’t

tolerate a significant loss of data when the system goes down, then the Site Reliability

Engineers must be able to bring the system back up ASAP.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3MuYXdzLmFtYXpvbi5jb20veHJheS9sYXRlc3QvZGV2Z3VpZGUveHJheS1jb25zb2xlLWhpc3RvZ3JhbXMuaHRtbCIsInBvc3RfaWQiOiI5Yjc5MWY0ZS1iMzA1LTQ3NGYtYmFiNC03MDBmYTIxZTYxNjkiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzNzg0LjY0OSwiaXNzIjoib3JjaGlkIn0.q2MliiQFp3Q8pb7xCxSoYAtaEGMFHr1Dx3FLdgoLckA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5icmVuZGFuZ3JlZ2cuY29tL0hlYXRNYXBzL2xhdGVuY3kuaHRtbCIsInBvc3RfaWQiOiI5Yjc5MWY0ZS1iMzA1LTQ3NGYtYmFiNC03MDBmYTIxZTYxNjkiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzNzg0LjY0OSwiaXNzIjoib3JjaGlkIn0.SsPdbI8cjo3okQoJ1L28JlzoFbdOmuX5mgGEAxOD27M
http://www.quastor.org

Load Balancing Strategies

The Purpose of Load Balancers

As your backend gets more traffic, you’ll eventually reach a point where vertically

scaling your web server (upgrading your hardware) becomes too costly. You’ll have to

scale horizontally and create a server pool of multiple machines that are handling

incoming requests.

A load balancer sits in front of that server pool and directs incoming requests to the

servers in the pool. If one of the web servers goes down, the load balancer will stop

sending it traffic. If another web server is added to the pool, the load balancer will start

sending it requests.

Load balancers can also handle other tasks like caching responses, handling session

persistence (send requests from the same client to the same web server), rate limiting

and more.

Typically, the web servers are hidden in a private subnet (keeping them secure) and

users connect to the public IP of the load balancer. The load balancer is the “front door”

to the backend.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Load Balancer vs. API Gateway

When you’re using a services oriented architecture, you’ll have an API gateway that

directs requests to the corresponding backend service. The API Gateway will also

provide other features like rate limiting, circuit breakers, monitoring, authentication

and more. The API Gateway can act as the front door for your application instead of a

load balancer.

API Gateways can replace what a load balancer would provide, but it’ll usually be

cheaper to use a load balancer if you’re not using the extra functionality provided by the

API Gateway.

Here’s a great blog post that gives a detailed comparison of AWS API Gateway vs. AWS

Application Load Balancer.

Types of Load Balancers

When you’re adding a load balancer, there are two main types you can use: layer 4 load

balancers and layer 7 load balancers.

This is based on the OSI Model, where layer 4 is the transport layer and layer 7 is the

application layer.

The main transport layer protocols are TCP and UDP, so a L4 load balancer will make

routing decisions based on the packet headers for those protocols: the IP address and

the port. You’ll frequently see the terms “4-tuple” or “5-tuple” hash when looking at L4

load balancers.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Rhc2hiaXJkLmlvL2Jsb2cvYXdzLWFwaS1nYXRld2F5LXZzLWFwcGxpY2F0aW9uLWxvYWQtYmFsYW5jZXIvIiwicG9zdF9pZCI6ImE3ZmVjNDQzLWFjNTktNGJkYS1iNDUwLTI1M2EzOGE4NGQzMCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4NDcuODIsImlzcyI6Im9yY2hpZCJ9.FLQ8aJrvsmnee2yHowG1b9VPAjFXu_bpHGsfD8DtBiE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9PU0lfbW9kZWwiLCJwb3N0X2lkIjoiYTdmZWM0NDMtYWM1OS00YmRhLWI0NTAtMjUzYTM4YTg0ZDMwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg0Ny44MiwiaXNzIjoib3JjaGlkIn0.ZNviNeYTkh5d6rGxS7cSeGpGlb7FIbKLe3N7j2w9gwQ
http://www.quastor.org

This hash is based on the "5-Tuple" concept in TCP/UDP.

● Source IP

● Source Port

● Destination IP

● Destination Port

● Protocol Type

With a 5 tuple hash, you would use all 5 of those to create a hash and then use that hash

to determine which server to route the request to. A 4 tuple hash would use 4 of those

factors.

With Layer 7 load balancers, they operate on the application layer so they have access to

the HTTP headers. They can read data like the URL, cookies, content type and other

headers. An L7 load balancer can consider all of these things when making routing

decisions.

Popular load balancers like HAProxy and Nginx can be configured to run in layer 4 or

layer 7. AWS Elastic Load Balancing service provides Application Load Balancer (ALB)

and Network Load Balancer (NLB) where ALB is layer 7 and NLB is layer 4 (there’s also

Classic Load Balancer which allows both).

The main benefit of an L4 load balancer is that it’s quite simple. It’s just using the IP

address and port to make its decision and so it can handle a very high rate of requests

per second. The downside is that it has no ability to make smarter load balancing

decisions. Doing things like caching requests is also not possible.

On the other hand, layer 7 load balancers can be a lot smarter and forward requests

based on rules set up around the HTTP headers and the URL parameters. Additionally,

you can do things like cache responses for GET requests for a certain URL to reduce

load on your web servers.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3N0YWNrb3ZlcmZsb3cuY29tL2EvMTU3NjM3MTciLCJwb3N0X2lkIjoiYTdmZWM0NDMtYWM1OS00YmRhLWI0NTAtMjUzYTM4YTg0ZDMwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg0Ny44MiwiaXNzIjoib3JjaGlkIn0.xqfoclbxIyR3gEZi5adESYlGlQtAaaL6tW1VIGZQBjw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RldmVsb3Blci5tb3ppbGxhLm9yZy9lbi1VUy9kb2NzL1dlYi9IVFRQL0hlYWRlcnMiLCJwb3N0X2lkIjoiYTdmZWM0NDMtYWM1OS00YmRhLWI0NTAtMjUzYTM4YTg0ZDMwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg0Ny44MiwiaXNzIjoib3JjaGlkIn0.8H5oN_CSf9YM1GGNPF7a_ZftkoA5oAwaNu50D4fb-D4
http://www.quastor.org

The downside of L7 load balancers is that they can be more complex and

computationally expensive to run. However, CPU and memory are now sufficiently fast

and cheap enough that the performance advantage for L4 load balancers has become

pretty negligible in most situations.

Therefore, most general purpose load balancers operate at layer 7. However, you’ll also

see companies use both L4 and L7 load balancers, where the L4 load balancers are

placed before the L7 load balancers.

Facebook has a setup like this where they use shiv (a L4 load balancer) in front of

proxygen (a L7 load balancer). You can see a talk about this set up here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy55b3V0dWJlLmNvbS93YXRjaD92PWRhOVF3N3Y1cUxNIiwicG9zdF9pZCI6ImE3ZmVjNDQzLWFjNTktNGJkYS1iNDUwLTI1M2EzOGE4NGQzMCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4NDcuODIsImlzcyI6Im9yY2hpZCJ9.hL29YY6FRUBNXHuy0WNslfg7JtzbFGAYEKB7wHgQ688
http://www.quastor.org

Load Balancing Algorithms

Round Robin - This is usually the default method chosen for load balancing where web

servers are selected in round robin order: you assign requests one by one to each web

server and then cycle back to the first server after going through the list. Many load

balancers will also allow you to do weighted round robin, where you can assign each

server weights and assign work based on the server weight (a more powerful machine

gets a higher weight).

An issue with Round Robin scheduling comes when the incoming requests vary in

processing time. Round robin scheduling doesn’t consider how much computational

time is needed to process a request, it just sends it to the next server in the queue. If a

server is next in the queue but it’s stuck processing a time-consuming request, Round

Robin will still send it another job anyway. This can lead to a work skew where some of

the machines in the pool are at a far higher utilization than others.

Least Connections (Least Outstanding Requests) - With this strategy, you look at the

number of active connections/requests a web server has and also look at server weights

(based on how powerful the server's hardware is). Taking these two into consideration,

you send your request to the server with the least active connections / outstanding

requests. This helps alleviate the work skew issue that can come with Round Robin.

Hashing - In some scenarios, you’ll want certain requests to always go to the same

server in the server pool. You might want all GET requests for a certain URL to go to a

certain server in the pool or you might want all the requests from the same client to

always go to the same server (session persistence). Hashing is a good solution for this.

You can define a key (like request URL or client IP address) and then the load balancer

will use a hash function to determine which server to send the request to. Requests with

the same key will always go to the same server, assuming the number of servers is

constant.

Consistent Hashing - The issue with the hashing approach mentioned above is that

adding/removing servers to the server pool will mess up the hashing scheme. Anytime a

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Sb3VuZC1yb2Jpbl9zY2hlZHVsaW5nIiwicG9zdF9pZCI6ImE3ZmVjNDQzLWFjNTktNGJkYS1iNDUwLTI1M2EzOGE4NGQzMCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4NDcuODIsImlzcyI6Im9yY2hpZCJ9.FkfoRPPcKN5hh99rBoQ64VOC5hqwDDWnWS0NnSFIo0E
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9XZWlnaHRlZF9yb3VuZF9yb2JpbiIsInBvc3RfaWQiOiJhN2ZlYzQ0My1hYzU5LTRiZGEtYjQ1MC0yNTNhMzhhODRkMzAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODQ3LjgyMSwiaXNzIjoib3JjaGlkIn0.KbGBhqOFUdl4GDSywUWYwOkVg-pVCK6SUc2CQgTyauo
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3Mub3JhY2xlLmNvbS9lbi11cy9pYWFzL0NvbnRlbnQvQmFsYW5jZS9SZWZlcmVuY2Uvc2Vzc2lvbnBlcnNpc3RlbmNlLmh0bSIsInBvc3RfaWQiOiJhN2ZlYzQ0My1hYzU5LTRiZGEtYjQ1MC0yNTNhMzhhODRkMzAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODQ3LjgyMSwiaXNzIjoib3JjaGlkIn0.3UmGoa6tmZ3lUlZAPy1TNbLnNR_SLMrI9vTG_EX0xxk
http://www.quastor.org

server is added, each request will get hashed to a new server. Consistent hashing is a

strategy that’s meant to minimize the number of requests that have to be sent to a new

server when the server pool size is changed. Here’s a great video that explains why

consistent hashing is necessary and how it works.

There are different consistent hashing algorithms that you can use and the most

common one is Ring hash. Maglev is another consistent hashing algorithm that was

developed by Google in 2016 and has been serving Google’s traffic since 2008.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy55b3V0dWJlLmNvbS93YXRjaD92PVVGOUlxbWc5NHRrIiwicG9zdF9pZCI6ImE3ZmVjNDQzLWFjNTktNGJkYS1iNDUwLTI1M2EzOGE4NGQzMCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4NDcuODIxLCJpc3MiOiJvcmNoaWQifQ.DjgmYxnZmQz89tGpgMLlhLfwtxQ4-kZSkpg3XhotXBA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5lbnZveXByb3h5LmlvL2RvY3MvZW52b3kvbGF0ZXN0L2ludHJvL2FyY2hfb3ZlcnZpZXcvdXBzdHJlYW0vbG9hZF9iYWxhbmNpbmcvbG9hZF9iYWxhbmNlcnMjcmluZy1oYXNoIiwicG9zdF9pZCI6ImE3ZmVjNDQzLWFjNTktNGJkYS1iNDUwLTI1M2EzOGE4NGQzMCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4NDcuODIxLCJpc3MiOiJvcmNoaWQifQ.C1cBE2n90eketflLBTcIq-VB6DaTVXYxuDiX1n1bpXE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3N0YXRpYy5nb29nbGV1c2VyY29udGVudC5jb20vbWVkaWEvcmVzZWFyY2guZ29vZ2xlLmNvbS9lbi8vcHVicy9hcmNoaXZlLzQ0ODI0LnBkZiIsInBvc3RfaWQiOiJhN2ZlYzQ0My1hYzU5LTRiZGEtYjQ1MC0yNTNhMzhhODRkMzAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODQ3LjgyMSwiaXNzIjoib3JjaGlkIn0.3AlbIoZwiuMsL0I-HHAlq0frJp7sfQvh3PqqtP_Ahm8
http://www.quastor.org

Scaling Relational Databases with Replicas and

Sharding

A vital part of scaling a web application is making sure your database can deal with the

increase in read/write load. For relational databases, the playbook revolves around

vertical scaling with getting a more powerful machine and horizontal scaling with

replicas and sharding.

For most applications, the read load will be far greater than the write load, so you’ll have

to deal with scaling reads first. This is done through adding read replicas to the database

so the original database can just handle write requests and the database replicas will

handle reads.

Eventually, the master won’t be able to handle all the write pressure, so a popular way of

dealing with that is through sharding. You split up your data into multiple databases, so

you can dedicate a machine to handling each chunk of data.

We’ll go through these strategies below.

Optimizations

Before you think about adding replicas or sharding, you should first explore all your

options around database optimizations.

Using the right indexes on tables, batching writes, analyzing the execution plan for your

most expensive SQL queries, etc. should all be done first.

Vertical Scaling

After exploring possible optimizations, vertical scaling will likely give you the biggest

bang for your buck. Getting a beefier CPU, more RAM, faster disk etc. should be

considered before scaling with replicas and sharding.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Adding Read Replicas

Most web applications have far more read load than write load, so reducing that

pressure by adding read replicas can have a huge impact on your database’s scalability.

Your original database becomes the leader and you add additional machines that

function as replicas/followers. Database reads are completed by the follower nodes

while writes are executed on the master node. After being executed on the master, writes

are copied over asynchronously to follower nodes.

Due to replication lag between the master and follower nodes, you’ll be sacrificing

consistency and have to deal with some stale reads.

One way of fixing this is to implement different read modes with strongly consistent

reads and eventually consistent reads.

Eventually consistent reads go to a follower node whereas strongly consistent reads will

be handled by the leader node. This lets you reduce read load on the leader database

while also having the ability to run strongly consistent read queries.

Another way to make reads strongly consistent is to wait until all the replicas have

gotten the write before you acknowledge it as being completed to the user.

Here’s a great blog post from Box on how they dealt with consistency issues with read

replicas.

However, adding read replicas will not help to scale the write load in any way. For that,

you’ll have to shard your database.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vYm94LXRlY2gtYmxvZy9ob3ctd2UtbGVhcm5lZC10by1zdG9wLXdvcnJ5aW5nLWFuZC1yZWFkLWZyb20tcmVwbGljYXMtNThjYzQzOTczNjM4IiwicG9zdF9pZCI6IjQxN2EwMWVjLTQyNWMtNGRkYi04YTVhLWUyNTM1NjA0ZGVjNSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4ODEuMjY5LCJpc3MiOiJvcmNoaWQifQ.OoQ-EHpGzPfXX0bJRQSQAonODBNbXxhXKsX5TbfPFYU
http://www.quastor.org

Sharding

With sharding, you’re taking your database and splitting up the data to store on multiple

databases. This lets you use multiple machines to store the same data, which makes it

easier to deal with write and read load (more machines to handle the traffic).

Some of the downsides are

● Adding complexity to your backend - Sharding is frequently implemented in

the application logic, so this means more complexity for your codebase. Plus,

you have all the standard stuff that makes distributed systems really hard

(network failures, synchronization issues, outages, etc.)

● Sacrificing Consistency - This is similar to what we discussed for adding read

replicas. Having multiple machines means data needs to be replicated

asynchronously or writes have to be done synchronously.

● Increased latency for certain reads - if a read needs data from multiple shards,

it will have to perform reads from multiple databases and then join the data

together.

You can break down your data using horizontal partitioning where you maintain the

table schema and columns, but have each shard contain a number of the rows of your

table.

Vertical Partitioning is where you split up your table based on the columns of your

table.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

You can implement sharding at the Application layer (where you’ll have code that

implements the partitioning in your application logic) or it can be done by the database

management system.

You can read about how Notion sharded Postgres by implementing their own

partitioning scheme in their application logic.

In terms of potential third party solutions, Vitess is an open source solution for sharding

MySQL that was developed at YouTube. Citus is a similar open source tool for sharding

Postgres.

You can read about how GitHub used Vitess to shard MySQL here.

Horizontal Partitioning Strategies

With horizontal partitioning, you’re taking one (or multiple) of the fields in your table

and making that your shard key.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5ub3Rpb24uc28vYmxvZy9zaGFyZGluZy1wb3N0Z3Jlcy1hdC1ub3Rpb24iLCJwb3N0X2lkIjoiNDE3YTAxZWMtNDI1Yy00ZGRiLThhNWEtZTI1MzU2MDRkZWM1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg4MS4yNywiaXNzIjoib3JjaGlkIn0.KOBj4AyxiUQy1K5d2loaedbRjEV7V-JNYCjrmrCexdw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3ZpdGVzcy5pby8iLCJwb3N0X2lkIjoiNDE3YTAxZWMtNDI1Yy00ZGRiLThhNWEtZTI1MzU2MDRkZWM1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg4MS4yNywiaXNzIjoib3JjaGlkIn0.hBOmWKGjvH0YYeFUeDrhtZZ4pWTOsh7lsIosNf5LZMw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vY2l0dXNkYXRhL2NpdHVzIiwicG9zdF9pZCI6IjQxN2EwMWVjLTQyNWMtNGRkYi04YTVhLWUyNTM1NjA0ZGVjNSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4ODEuMjcsImlzcyI6Im9yY2hpZCJ9.gFf1BojOLsv6GKRV0Pc3XqnOQr-f0DRzb7ZoJmHMHNc
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5ibG9nLzIwMjEtMDktMjctcGFydGl0aW9uaW5nLWdpdGh1YnMtcmVsYXRpb25hbC1kYXRhYmFzZXMtc2NhbGUvIiwicG9zdF9pZCI6IjQxN2EwMWVjLTQyNWMtNGRkYi04YTVhLWUyNTM1NjA0ZGVjNSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4ODEuMjcsImlzcyI6Im9yY2hpZCJ9.tewm9ptds60W6QFp5gRH3eSkgN3n2aWpglFZD79yrFc
http://www.quastor.org

You’ll use the shard key’s value to determine which database shard a row goes into. The

shard key should be selected so that each database shard gets an equal number of

read/write queries. You want to minimize the number of hot database shards you have

(shards that get more load than the others).

Some ways of using the shard key to partition are hash based sharding, range based

sharding and lookup table based sharding.

Hash Based Sharding

You run a hash function on the value of the shard key and then categorize it based on

the hashed value. A good hash function will satisfy the uniformity property, so the

outputs will be mapped evenly over the output range. This should help mitigate hot/cold

shards.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9IYXNoX2Z1bmN0aW9uI1VuaWZvcm1pdHkiLCJwb3N0X2lkIjoiNDE3YTAxZWMtNDI1Yy00ZGRiLThhNWEtZTI1MzU2MDRkZWM1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg4MS4yNywiaXNzIjoib3JjaGlkIn0.2mZPCMt8HnOxXSJ0okuDkAPLaYQvn80tLPkPXhU4z50
http://www.quastor.org

Range Based Sharding

With this strategy, you’ll split up your partition key into ranges and then divide the rows

into shards based on that.

Examples of ranges could be location (each country is a shard), date (each month is a

shard), price (every $100 increment is a shard), etc.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Lookup Table Based Sharding

A third way of implementing sharding is by using a lookup table (or hash table).

Like we did in key-based sharding, you'll set one column of your data as the shard key.

Then, you can randomly assign rows to different shards and keep track of which shard

contains which row with a lookup table.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Backend Caching

Caching is a crucial part of large scale, performant system design. For many web

applications, the database workload will be read intensive (users will send far more

database read requests than writes) so finding a way to reduce the read load on your

database can be very useful.

If the data being read doesn’t change often, then adding a caching layer can significantly

reduce the latency users experience while also reducing the load on your database. The

reduction in read requests frees up your database for writes (and reads that were missed

by the cache).

The cache tier is a data store that temporarily stores frequently accessed data. It’s not

meant for permanent storage and typically you’ll only store a small subset of your data

in this layer.

When a client requests data, the backend will first check the caching tier to see if the

data is cached. If it is, then the backend can retrieve the data from cache and serve it to

the client. This is a cache hit. If the data isn’t in the cache, then the backend will have to

query the database. This is a cache miss. Depending on how the cache is set up, the

backend might write that data to the cache to avoid future cache misses.

A couple examples of popular data stores for caching tiers are Redis, Memcached,

Couchbase and Hazelcast. Redis and Memcached are the most popular and they’re

offered as options with cloud cache services like AWS’s ElastiCache and Google Cloud’s

Memorystore.

Redis and Memcached are in-memory, key-value data stores, so they can serve reads

with a lower latency than disk-based data stores like Postgres. They’re in-memory data

stores, so RAM is used as the primary method of storing and serving data while the disk

is used for backups and logging. This translates to speed improvements as memory is

much faster than disk.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9BbWF6b25fRWxhc3RpQ2FjaGUiLCJwb3N0X2lkIjoiYzkwYzY4YzctMzg3Ni00NTI2LTlhYTEtOTg1ZjY5ZGIzYzhjIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg4MS44MjUsImlzcyI6Im9yY2hpZCJ9.VPcIDtC878JGyDYIKVMST84k16b9jtqdh-VkE8hXrI4
http://www.quastor.org

Downsides of Caching

If implemented poorly, caching can result in increased latency to clients and add

unnecessary load to your backend. Everytime there’s a cache miss, then the backend has

just wasted time making a request to the caching tier.

If you have a high cache miss rate, then that means the caching tier is adding more

latency than it’s reducing and you’d be faster off by removing it. We’ll talk about

strategies to minimize the cache miss rate.

Another downside of adding a cache tier is dealing with stale data. If the data you’re

caching is static, then this isn’t an issue but you’ll frequently want to cache data that is

being changed. You’ll have to have a strategy for cache invalidation to minimize the

amount of stale data you're sending to clients. We’ll talk about this below.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9DYWNoZV9pbnZhbGlkYXRpb24iLCJwb3N0X2lkIjoiYzkwYzY4YzctMzg3Ni00NTI2LTlhYTEtOTg1ZjY5ZGIzYzhjIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg4MS44MjUsImlzcyI6Im9yY2hpZCJ9.6-aQPSp12KKYg-g7Tkve1znUmDo_rEaSIfAslFeA-tc
http://www.quastor.org

Implementing Caching

There are several ways of implementing caching in your application. We’ll go through a

few of the main ones.

Cache Aside

The most popular method is a Cache Aside strategy.

Here’s the steps

1. Client requests data

2. The server checks the caching tier. If there’s a cache hit, then the data is

immediately served.

3. If there’s a cache miss, then the server checks the database and returns the

data.

4. The server writes the data to the cache.

Here, your cache is being loaded lazily, as data is only being cached after it’s been

requested. You usually can’t store your entire dataset in cache, so lazy loading the cache

is a good way to make sure the most frequently read data is cached.

However, this also means that the first time data is requested will always result in a

cache miss. Developers solve this by cache warming, where you load data into the cache

manually.

In order to prevent stale data, you’ll also give a Time-To-Live (TTL) whenever you cache

an item. When the TTL expires, then that data is removed from the cache. Setting a very

low TTL will reduce the amount of stale data but also result in a higher number of cache

misses. You can read more about this tradeoff in this AWSWhitepaper.

An alternative caching method that minimizes stale data is the Write-Through cache.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3MuYXdzLmFtYXpvbi5jb20vd2hpdGVwYXBlcnMvbGF0ZXN0L2RhdGFiYXNlLWNhY2hpbmctc3RyYXRlZ2llcy11c2luZy1yZWRpcy9jYWNoZS12YWxpZGl0eS5odG1sIiwicG9zdF9pZCI6ImM5MGM2OGM3LTM4NzYtNDUyNi05YWExLTk4NWY2OWRiM2M4YyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4ODEuODI1LCJpc3MiOiJvcmNoaWQifQ.TmPG-NDQvSFSj6GEtNstJYeULJjz8Xo9xaLM00VjBc0
http://www.quastor.org

Write Through

AWrite Through cache can be viewed as an eager loading approach. Whenever there’s a

change to the data, that change is reflected in the cache.

This helps solve the data consistency issues (avoid stale data) and it also prevents cache

misses for when data is requested the first time.

Here’s the steps.

1. Client writes/modifies data.

2. Backend writes the change to both the database and also to the cache. You can

also do this step asynchronously, where the change is written to the cache and

then the database is updated after a delay (a few seconds, minutes, etc.). This

is known as a Write Behind cache.

3. Clients can request data and the backend will try to serve it from the cache.

A Write Through strategy is often combined with a Read Through so that changes are

propagated in the cache (Write Through) but missed cache reads are also written to the

cache (Read Through).

You can read about more caching patterns in the Oracle Coherence Documentation

(Coherence is a Java-based distributed cache).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3Mub3JhY2xlLmNvbS9jZC9FMTUzNTdfMDEvY29oLjM2MC9lMTU3MjMvY2FjaGVfcnR3dHdicmEuaHRtI0NPSERHNTE3NyIsInBvc3RfaWQiOiJjOTBjNjhjNy0zODc2LTQ1MjYtOWFhMS05ODVmNjlkYjNjOGMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODgxLjgyNSwiaXNzIjoib3JjaGlkIn0.UQ_pk6CZ2LTYjIdWX_jCxFzJoFbXOE50VjIMy9Vwym4
http://www.quastor.org

Cache Eviction

The amount of storage you have available in your caching tier is usually a lot smaller

than what you have available for your database.

Therefore, you’ll eventually reach a situation where your cache is full and you can’t add

any new data to it.

To solve this, you’ll need a cache replacement policy. The ideal cache replacement policy

will remove cold data (data that is not being read frequently) and replace it with hot data

(data that is being read frequently).

There are many different possible cache replacement policies.

A few categories are

● Queue-Based - Use a FIFO queue and evict data based on the order in which it

was added regardless of how frequently/recently it was accessed.

● Recency-Based - Discard data based on how recently it was accessed. This

requires you to keep track of when each piece of data in your cache was last

read. The Least Recently Used (LRU) policy is where you evict the data that

was read least recently.

● Frequency-Based - Discard data based on how many times it was accessed.

You keep track of how many times each piece of data in your cache is being

read. The Least Frequently Used (LFU) policy is where you evict data that was

read the least.

The type of cache eviction policy you use depends on your use case. Picking the optimal

eviction policy can massively improve your cache hit rate.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9DYWNoZV9yZXBsYWNlbWVudF9wb2xpY2llcyIsInBvc3RfaWQiOiJjOTBjNjhjNy0zODc2LTQ1MjYtOWFhMS05ODVmNjlkYjNjOGMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODgxLjgyNSwiaXNzIjoib3JjaGlkIn0.UdIsA3grDAIWy4P96sLQKYoGujm14agVSg1ASL53SaU
http://www.quastor.org

Here’s some helpful links on Caching Strategies. I referred to these sources while writing

this article.

● Caching patterns - AWSWhitepaper

● Cache-Aside pattern - Azure Architecture Center

● Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching

● Cache replacement policies - Wikipedia

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3MuYXdzLmFtYXpvbi5jb20vd2hpdGVwYXBlcnMvbGF0ZXN0L2RhdGFiYXNlLWNhY2hpbmctc3RyYXRlZ2llcy11c2luZy1yZWRpcy9jYWNoaW5nLXBhdHRlcm5zLmh0bWwiLCJwb3N0X2lkIjoiYzkwYzY4YzctMzg3Ni00NTI2LTlhYTEtOTg1ZjY5ZGIzYzhjIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzg4MS44MjUsImlzcyI6Im9yY2hpZCJ9.66AooIEx-rSzYR0Tr5FjPEusWpLNVvZOcsRgZj8Wp0A
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2xlYXJuLm1pY3Jvc29mdC5jb20vZW4tdXMvYXp1cmUvYXJjaGl0ZWN0dXJlL3BhdHRlcm5zL2NhY2hlLWFzaWRlIiwicG9zdF9pZCI6ImM5MGM2OGM3LTM4NzYtNDUyNi05YWExLTk4NWY2OWRiM2M4YyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM4ODEuODI1LCJpc3MiOiJvcmNoaWQifQ.gSyM7LUodeqhpA9LRNEnadHJu9aq8qT4hwLczNr0Hn8
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3Mub3JhY2xlLmNvbS9jZC9FMTUzNTdfMDEvY29oLjM2MC9lMTU3MjMvY2FjaGVfcnR3dHdicmEuaHRtI0NPSERHNTE4MSIsInBvc3RfaWQiOiJjOTBjNjhjNy0zODc2LTQ1MjYtOWFhMS05ODVmNjlkYjNjOGMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODgxLjgyNSwiaXNzIjoib3JjaGlkIn0.cgDJGtGKMwD5gptwE3tJtOeqv0QtUWhNoKMqVbq0jUA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9DYWNoZV9yZXBsYWNlbWVudF9wb2xpY2llcyIsInBvc3RfaWQiOiJjOTBjNjhjNy0zODc2LTQ1MjYtOWFhMS05ODVmNjlkYjNjOGMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzODgxLjgyNSwiaXNzIjoib3JjaGlkIn0.UdIsA3grDAIWy4P96sLQKYoGujm14agVSg1ASL53SaU
http://www.quastor.org

API Gateways

Within your backend you’ll have many different machines for the various services,

databases, caches, load balancers, etc. These machines are all connected through an

internal network; your VPC.

Exposing any of your internal machines to the public internet is not a good idea.

Anything that is exposed will need rate limiting and protections around DDoS. It’s also a

security risk; if hackers can see what software your servers are running, then they can

look up any known vulnerabilities/exploits and attack you with them.

Instead, you’ll want to have all your internal machines inside of a VPC and expose them

through a single entrypoint: a reverse proxy. The reverse proxy is the only thing exposed

to the public internet and it will have security protections against things like DDoS

attacks.

Previously, the most common type of reverse proxy was a load balancer. When someone

sends requests to your backend, they go to the load balancer as the entrypoint.

We talked in depth about load balancers in a previous Quastor Pro article here.

WIth the rise of microservice architectures, API gateways have become significantly

more popular as the entrypoint to your backend. They handle tasks like load balancing,

but they can also do much more.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9WaXJ0dWFsX3ByaXZhdGVfY2xvdWQiLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.a1koqN5NmF7N2gOGVwvj_8AUvKZWdriTC6fY0DqwlOw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Jsb2cucXVhc3Rvci5vcmcvcC9sb2FkLWJhbGFuY2luZy1zdHJhdGVnaWVzLWF1dG9jb21wbGV0ZS1pbnN0YWNhcnQiLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.KEdvvJn5SPhDePwcyG_6YKVuuYc5GSKA9MNESfUVB6g
http://www.quastor.org

API Gateway use cases

As mentioned, API gateways serve as the entrypoint to your backend. When a client

device sends a request to your backend, they’re communicating with your API gateway,

The API Gateway will handle tasks like

● Load Balancing - Balance the requests between the different servers in your

server pool. API gateways function in a similar way to an L7 load balancer.

● Caching - The gateway can cache the response to specific endpoints to reduce the

number of calls made to your backend services. You can see how caching works

with Amazon API gateway here.

● Rate Limiting - Misconfigured/malicious clients can spam your backend with

traffic, so it’s important to block any clients that do this with a 429 response. This

can be implemented within your API gateway so it has minimal impact on

backend services. Amazon API Gateway does this with the token bucket rate

limiting algorithm.

● Authentication and Authorization - Many API gateways will also authenticate the

requests that come in and make sure the client is authorized to access the

resources they’re asking for.

● Service Discovery - When you use a microservice architecture, you’ll have

hundreds/thousands of backend services. The API gateway will keep track of

which endpoints relate to which services and make the backend calls to the

appropriate services.

● Protocol Translation - The client might be sending you requests with HTTP but

your backend uses gRPC to communicate. The API gateway will handle this

translation where it takes the HTTP request and converts it to gRPC. Then, it

takes the backend service’s response and creates the HTTP response to send back

to the client.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3MuYXdzLmFtYXpvbi5jb20vYXBpZ2F0ZXdheS9sYXRlc3QvZGV2ZWxvcGVyZ3VpZGUvYXBpLWdhdGV3YXktY2FjaGluZy5odG1sIiwicG9zdF9pZCI6IjBkMGQzOGUxLTVmNGQtNDg0OC04NGY5LWVkMmE4YWEwNjc1NCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIwZTQ2YmQ3Ni1jNjI0LTQxZWYtYThhNy1hZGQ2MTgwMDQzYjkiLCJpYXQiOjE2Nzk3OTM3NzIuMDQ2LCJpc3MiOiJvcmNoaWQifQ.UHdVPjtJf55HpFmPnNMnVKZ3ErAwWHAVLU4cDPSl7gw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RldmVsb3Blci5tb3ppbGxhLm9yZy9lbi1VUy9kb2NzL1dlYi9IVFRQL1N0YXR1cy80MjkiLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.AmTy3mOQqFqfHzuICTDeEqLsyI9FyfSXRHnxK3vHM24
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3MuYXdzLmFtYXpvbi5jb20vYXBpZ2F0ZXdheS9sYXRlc3QvZGV2ZWxvcGVyZ3VpZGUvYXBpLWdhdGV3YXktcmVxdWVzdC10aHJvdHRsaW5nLmh0bWwiLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.Kbv-HcbzRQOFycNcTVhxkbMNVccnxEIArpA_r2gjJCA
http://www.quastor.org

● Monitoring, Logging and Analytics - The API Gateway will also handle

monitoring so you can have detailed logs of all the traffic that hit your backend

and all the responses that were sent back.

API gateways are primarily used with microservices architectures. You can use an API

gateway with a monolith, but it’s usually not necessary. The features around

authentication/authorization and protocol translation are typically already handled by

the monolith. You also don’t need service discovery as there’s just a single service.

Therefore, with monoliths, teams will usually just use load balancers as the entrypoint.

However, you’ll also see engineering teams (with services-oriented architectures) use

both. They’ll have load balancers serve as the entry point to the application. Then, an

API gateway will sit between the load balancers and all microservices in the backend.

API Gateway Lifecyle

Uber wrote a great blog post delving into how their API gateway works. We’ll use this to

illustrate the request lifecycle.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy51YmVyLmNvbS9lbi1JTi9ibG9nL2FyY2hpdGVjdHVyZS1hcGktZ2F0ZXdheS8iLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.yWJHA2X0HyU1XLPy4wekUivU063NOHnEGb4B8YrqfJY
http://www.quastor.org

Uber developed their own API gateway to handle data payloads across multiple

protocols and client device types. They use Nginx as the entrypoint to the backend,

which handles load balancing and decryption. From there, the requests go to the API

gateway.

The Gateway’s lifecycle consists of several steps.

1. Protocol Manager - This layer contains a deserializer and serializer for all of the

protocols supported by the gateway. The gateway has to deal with different types

of protocol payloads like JSON, Thrift, Protobuf, etc. so this layer handles

translation

2. Middleware - This layer contains different middleware functions for things like

authentication, authorization, rate limiting, logging, monitoring, etc. Engineers

can write the code for new middleware functions and add them to the API

gateway through a UI

3. Endpoint Handler - This layer validates the request and transforms the request

object into an object that backend services can understand.

4. Requests to Backend Services - This part of the backend is responsible for making

the actual calls to backend microservices. It handles service discovery to figure

out which microservices to call and also takes care of things like circuit breaking

(so a microservice doesn’t get overloaded) and error handling, timeouts, retries

and more.

This describes how the API gateway takes in a request. To send a response back to the

client, the request goes through the same components in reverse order.

Here’s the lifecycle of sending a request back to the client.

1. Requests to backend services - This service has already made requests to various

backend microservices and now it’s received responses. This part of the gateway

aggregates the responses and sends it to the endpoint handler.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

2. Endpoint Handler - This converts the back-end service responses to the endpoint

response schema. It performs transforms on the response objects to do this. It

also performs validation on the endpoint response based on the schema.

3. Middleware - Uber has middleware functions that work on the response objects

to handle things like logging and monitoring. These functions might also add

things like HTTP headers to the response object.

4. Payload Manager - This transforms the backend response to the relevant payload

protocol like JSON, Thrift, Protobuf, etc. Then it sends it back to the load

balancer, who sends it to the client.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

History of API Gateways

Previously, companies used monolithic architectures so they didn’t need the feature set

of an API gateway. Instead, they relied on load balancers to route requests to the server

pool, where each machine was running an instance of the monolith.

F5 was founded in 1996, HAProxy in 2001 and NGINX in 2002. These companies all

produced network/application load balancers to direct traffic to the servers in the pool.

Large tech companies like Amazon, Netflix, eBay and more began to adopt service

oriented architectures. These companies (Netflix especially) began to publicly champion

microservices and the term became commonly used by the early 2010s.

In mid-2013, Netflix released their JVM-based API gateway: Zuul. It has a ton of cool

features like allowing Groovy scripts to be injected at runtime to add middleware and

dynamically modify behavior. You could write middleware to handle things like rate

limiting, load shedding, authentication, monitoring, release engineering (canary

releases or A/B testing) and more.

In the mid to late 2010s, you had the adoption of containers and container management

tools like Kubernetes. This led to the concept of a service mesh architecture with

projects like Envoy by Lyft. These tools facilitate service discovery so developers can

focus on writing the code for their microservice and let the service mesh tool handle

inter-service communication. Companies like Snapchat use Envoy for their service mesh

and also have it serve as the API gateway.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZy5zbmFwLmNvbS9lbi1VUy9tb25vbGl0aC10by1tdWx0aWNsb3VkLW1pY3Jvc2VydmljZXMtc25hcC1zZXJ2aWNlLW1lc2giLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.qsYfnQ8e2CMQ1xQEl30EDoVsInPJ77sME_6vCM9RL8A
http://www.quastor.org

API Gateways

Here are a couple popular options for API gateways

● Amazon API Gateway (plus managed solutions from other cloud providers)

● Kong Gateway

● Tyk Gateway

● Ambassador

● Nginx Plus

● Envoy

And more. Kong, Tyk, Ambassador and Envoy are open source.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Real World Uses

Zuul, Netflix’s API Gateway

Netflix uses Zuul, which is built with Java. It handles tasks like load balancing, routing,

monitoring, authentication, payload transformation, etc. They also built in features to

increase reliability like load shedding and stress testing (to stress test backend

microservices). You can read about how Zuul does Service Discovery for Netflix’s

thousands of microservices here. The gateway also handles errors in the backend by

categorizing the error message and running retries.

The wiki gives a great overview of how Netflix uses Zuul and the other tooling they built

as complements to the gateway.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vTmV0ZmxpeC96dXVsL3dpa2kiLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.lqA_52RP5g3Lc8DBTeaAbqHmDNWjsdgnJte_XCnEuYM
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vTmV0ZmxpeC96dXVsL3dpa2kvQ29yZS1GZWF0dXJlcyNzZXJ2aWNlLWRpc2NvdmVyeSIsInBvc3RfaWQiOiIwZDBkMzhlMS01ZjRkLTQ4NDgtODRmOS1lZDJhOGFhMDY3NTQiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzNzcyLjA0NiwiaXNzIjoib3JjaGlkIn0.fxpkdDPcRr9cH0-QD9S8k-MD5ViD_BoPde4ewvs-YvE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vTmV0ZmxpeC96dXVsL3dpa2kiLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.lqA_52RP5g3Lc8DBTeaAbqHmDNWjsdgnJte_XCnEuYM
http://www.quastor.org

TAG, Tinder API Gateway

Tinder has more than 500 microservices that communicate with each other using a

service mesh. They built TAG on top of Spring Cloud Gateway, an API gateway that’s

part of the Java Spring ecosystem. The API gateway handles tasks like load balancing,

transforming requests/responses, HTTP to gRPC conversion and more.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vdGluZGVyL2hvdy13ZS1idWlsdC10aGUtdGluZGVyLWFwaS1nYXRld2F5LTgzMWM2Y2E1Y2VjYSIsInBvc3RfaWQiOiIwZDBkMzhlMS01ZjRkLTQ4NDgtODRmOS1lZDJhOGFhMDY3NTQiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMGU0NmJkNzYtYzYyNC00MWVmLWE4YTctYWRkNjE4MDA0M2I5IiwiaWF0IjoxNjc5NzkzNzcyLjA0NiwiaXNzIjoib3JjaGlkIn0.5sc7Vy39slHsQbex0kv-oYGMA9Vx7OzzCkU_hbN5mCw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Nsb3VkLnNwcmluZy5pby9zcHJpbmctY2xvdWQtZ2F0ZXdheS9yZWZlcmVuY2UvaHRtbC8iLCJwb3N0X2lkIjoiMGQwZDM4ZTEtNWY0ZC00ODQ4LTg0ZjktZWQyYThhYTA2NzU0IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjBlNDZiZDc2LWM2MjQtNDFlZi1hOGE3LWFkZDYxODAwNDNiOSIsImlhdCI6MTY3OTc5Mzc3Mi4wNDYsImlzcyI6Im9yY2hpZCJ9.dE402o__anYkWtDxo6U7FOwjT3O8B028RGkGihxV05Q
http://www.quastor.org

An Introduction to Compilers and LLVM

LLVM is an insanely cool set of low-level technologies (assemblers, compilers,

debuggers) that are language-agnostic. They’re used for C, C++, Ruby, C#, Scala, Swift,

Haskell, and a ton of other languages.

This post goes through an introduction to compiler design, the motivations behind

LLVM, the design of LLVM and some extremely useful features that LLVM provides.

We’ll be giving a summary below.

Back in 2000, open source programming language implementations (interpreters and

compilers) were designed as special purpose tools and were monolithic executables. It

would’ve been difficult to reuse the parser from a static compiler to do static analysis or

refactoring.

Additionally, programming language implementations usually provided either a

traditional static compiler or a runtime compiler in the form of an interpreter or JIT

compiler.

It was very uncommon to see a language implementation that had supported both, and

if there was then there was very little sharing of code.

The LLVM project helped change this.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDRnRFeUV5SURJeUpGSURJRUl5SXlJdUV4SXlKRUlKRXlJSEl4RXlJdkl2SklJd0V4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSUdJRkZGRkdGREZHRkxFd0ZERkpGRklFRXdGR0ZLRkZJSEV3SURGRUlERkVFd0ZKSUZGRkZMSUdJSUZJRklGSUZIRkpJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Introduction to Classical Compiler Design

The most popular design for traditional static compilers is the three-phase design where

the major components are the front end, the optimizer, and the back end.

Front End

The front end parses the source code (checking it for errors) and builds a

language-specific Abstract Syntax Tree.

The AST is optionally converted to a new representation for optimization (this may be a

common code representation, where the code is the same regardless of the input source

code’s language).

Optimizer

The optimizer runs a series of optimizing transformations to the code to improve the

code’s running time, memory footprint, storage size, etc.

This is more or less independent of the input source code language and the target

language

Back End

The back end maps the optimized code onto the target instruction set.

It’s responsible for generating fast code that takes advantage of the specific features of

the supported architecture.

Common parts of the back end include instruction selection, register allocation, and

instruction scheduling.

The most important part of this design is that a compiler can be easily adapted to

support multiple source languages or target architectures.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Porting the compiler to support a new source language means you have to implement a

compiler front end for that source language, but you can reuse the optimizer and back

end.

The same applies for adding a new target architecture for the compiler. You just have to

implement the back end and you can reuse the front end and optimizer.

Additionally, you can use specific parts of the compiler for other purposes. For example,

pieces of the compiler front end could be used for documentation generation and static

analysis tools.

The main issue was that this model was rarely realized in practice. If you looked at the

open source language implementations prior to LLVM, you’d see that implementations

of Perl, Python, Ruby, Java, etc. shared no code.

While projects like GHC and FreeBASIC were designed to compile to multiple different

CPUs, their implementations were specific to the one source language they supported

(Haskell for GHC).

Compilers like GCC suffered from layering problems and leaky abstractions. The back

end in GCC uses front end ASTs to generate debug info and the front end generates back

end data structures.

The LLVM project sought to fix this.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

LLVM’s Implementation of the Three-Phase Design

In an LLVM-based compiler, the front end is responsible for parsing, validating, and

diagnosing errors in the input code.

The front end then translates the parsed code into LLVM IR (LLVM Intermediate

Representation).

The LLVM IR is a complete code representation. It is well specified and is the only

interface to the optimizer.

This means that if you want to write a front end for LLVM, all you need to know is what

LLVM IR is, how it works, and what invariants it expects.

LLVM IR is a low-level RISC-like virtual instruction set and it is how the code is

represented in the optimizer. It generally looks like a weird form of assembly language.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Here’s an example of LLVM IR and the corresponding C code.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Now, the optimizer stage of the compiler takes the LLVM IR and optimizes that code.

Most optimizations follow a simple three-part structure:

1. Look for a pattern to be transformed

2. Verify that the transformation is safe/correct for the matched instance

3. Do the transformation, updating the LLVM IR code

An example of an optimization is pattern matching on basic math expressions like

replacing X - X with 0 or (X*2)-X with X.

You can easily customize the optimizer to add your own optimizing transformations.

After the LLVM IR code is optimized, it goes to the back end of the compiler (also

known as the code generator).

The LLVM code generator transforms the LLVM IR into target specific machine code.

The code generator’s job is to produce the best possible machine code for any given

target.

LLVM’s code generator splits the code generation problem into individual passes-

instruction selection, register allocation, scheduling, code layout optimization, assembly

emission, and more.

You can customize the back end and choose among the default passes (or override them)

and add your own target-specific passes.

This allows target authors to choose what makes sense for their architecture and also

permits a large amount of code reuse across different target back ends (code from a pass

for one target back end can be reused by another target back end).

The code generator will output target specific machine code that you can now run on

your computer.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

For a more detailed overview and details on unit testing, modular design and future

directions of LLVM, read the full post!

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDRnRFeUV5SURJeUpGSURJRUl5SXlJdUV4SXlKRUlKRXlJSEl4RXlJdkl2SklJd0V4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSUdJRkZGRkdGREZHRkxFd0ZERkpGRklFRXdGR0ZLRkZJSEV3SURGRUlERkVFd0ZKSUZGRkZMSUdJSUZJRklGSUZIRkpJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

HowWhatsApp served 1 billion users with only 50

engineers.

In 2016, WhatsApp reached more than a billion users and had the following load stats

● 42 billion messages sent daily

● 1.6 billion pictures sent daily

● 250 million videos sent daily

They managed to serve this scale with only 50 engineers.

Here’s a dive into the engineering culture and tech stack that made this possible.

Engineering Culture

WhatsApp’s Engineering culture consists of 3 main principles

1. Keep Things Small

2. Keep Things Simple

3. Have a Single Minded Focus on the Mission

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Keep Things Small

WhatsApp consciously keeps the engineering staff small to only about 50 engineers.

Individual engineering teams are also small, consisting of 1 - 3 engineers and teams are

each given a great deal of autonomy.

In terms of servers, WhatsApp prefers to use a smaller number of servers and vertically

scale each server to the highest extent possible.

Their goal was previously to have 1 million users for every server (but that’s become

more difficult as they’ve added more features to the app and as users are generating

more activity on a per-user basis).

Having a fewer number of servers means fewer things breaking down, which makes it

easier for the team to handle.

The same goes for the software side where they limit the total number of systems and

components in production.

That means fewer systems that have to be developed, deployed and supported.

There aren’t many systems/components that are developed and then put into

maintenance mode (to eventually become orphans until something goes wrong).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Keep Things Simple

WhatsApp uses the mantra Just Enough Engineering.

They avoid over-investing in systems and components.

Instead, they focus on building just enough for scalability, security and reliability.

One of the key factors when they make technical choices is “what is the simplest

approach?”

Also, they avoid investing in automation unless it’s completely necessary.

Have a Single Minded Focus on the Mission

Product Design at WhatsApp is incredibly focused.

It’s dedicated to delivering a core communications app with a great UI.

They avoid extra bells and whistles and don’t implement features that aren’t exclusively

focused on core communications.

The simpler product makes it much easier to maintain and scale.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Tech Stack

The tech stack revolves around 3 core components: Erlang, FreeBSD and SoftLayer.

Erlang

Erlang is the programming language of choice for WhatsApp’s backend systems.

Erlang was designed for concurrency from the start, and fault tolerance is a first class

feature of the language.

You can read more about Erlang’s fault tolerance here.

Developer productivity with Erlang is also extremely high. However, it is a functional

language, so it takes a little getting used to if you’re not familiar with the paradigm.

The language is very concise and it’s easy to do things with very few lines of code.

The OTP (Open Telecom Platform) is a collection of open source middleware, libraries

and tools for Erlang.

WhatsApp tries to avoid dependencies as much as possible, but they do make use of

Mnesia, a distributed database that’s part of OTP.

Erlang also brings the ability to hotswap code. You can take new application code and

load it into a running application without restarting the application.

This makes the iteration cycle very quick and allows WhatsApp to release quick fixes

and have extremely long uptimes for their services.

To see exactly how WhatsApp’s backend is built with Erlang, you can watch this talk

from 2018.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURJRkl1SXlKSUlISkVJSUl2SXlKSkV4SUZJeUl3RXlJREV5RkZGREZKRklGS0ZJRkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGREZKSUVJRElGSUhFd0ZMRkhJSUlFRXdGR0lJRklGR0V3SUVGSEZJSURFd0ZFRkhJR0ZGSUhGR0ZDRkVGRElIRkVJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd5SkNJSEl4SHlIR0lISXZJSElGSXlJd0h5SENJdklESkdJSUl5SkVJd0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNGSkZERkpJRUlESUZJSEV3RkxGSElJSUVFd0ZHSUlGSUZHRXdJRUZIRklJREV3RkVGSElHRkZJSEZHRkNGRUZESUhGRUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpMSXlKSEpHSkhJRUlIRXhJRkl5SXdFeUpKSURKR0lGSUtGeUpJRndHdkd0SktGSUl3SEhHSEdJR0RKREhERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZKRkRGSklFSURJRklIRXdGTEZISUlJRUV3RkdJSUZJRkdFd0lFRkhGSUlERXdGRUZISUdGRklIRkdGQ0ZFRkRJSEZFSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

FreeBSD

FreeBSD is the OS WhatsApp uses for their servers.

The decision to use FreeBSD was made by the founders of WhatsApp, based on their

previous experience at Yahoo!

The founders (and a lot of the early team) all used to be part of Yahoo!, where FreeBSD

was used extensively.

To see exactly how WhatsApp uses FreeBSD, you can watch this talk.

Just note, the talk is from 2014, so some things may be out of date now.

SoftLayer

SoftLayer is the hosting platform that WhatsApp was using in 2016.

They picked SoftLayer for two main reasons

1. The availability of FreeBSD as a first class operating system.

2. The ability to order and operate bare metal servers.

However, SoftLayer is owned by IBM (part of IBM public cloud), and WhatsApp has

since moved off SoftLayer to use Facebook’s infrastructure.

They made the transition in 2017.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpMSXlKSEpHSkhJRUlIRXhJRkl5SXdFeUpKSURKR0lGSUtGeUpJRndIR0l4SUhHdkd5RkhIR0lHSEpIeUd3SHZKSEZDRkNGRUZJSUlJSElESkdKSEpFSUhGd0pMSXlKSEpHSkhFeElFSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGREZKSUVJRElGSUhFd0ZMRkhJSUlFRXdGR0lJRklGR0V3SUVGSEZJSURFd0ZFRkhJR0ZGSUhGR0ZDRkVGRElIRkVJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElGSXhJRUlGRXhJRkl5SXdFeUZFRkNGREZKRXlGQ0ZJRXlGQ0ZKRXlJSUlESUZJSElFSXlJeUl1RXdKQ0l2SURJeEl4SUxJeElKRXdKR0l5RXdJd0l5SklJSEV3SkpJS0lESkdKRklESkNKQ0V3SXlJSUlJRXdJTElFSXdKRkV3SkNKSElFSXZJTElGRXdJRkl2SXlKSElHRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNGSkZERkpJRUlESUZJSEV3RkxGSElJSUVFd0ZHSUlGSUZHRXdJRUZIRklJREV3RkVGSElHRkZJSEZHRkNGRUZESUhGRUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

You can view the full talk on WhatsApp’s engineering here.

Get more specific details from this High Scalability post on WhatsApp Engineering.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVKRkV4SUlJRElGSUhJRUl5SXlJdUV4SUZJeUl3RXlKSUlMSUdJSEl5SkZFeUlJRktFd0ZFRkNGREZJRXlJREV3SXZJeUl5SXVFd0lESkdFd0pKSUtJREpHSkZJREpDSkNFd0lISXhJSklMSXhJSElISkVJTEl4SUpFd0lJSXlKRUV3SkZKSElGSUZJSEpGSkZFd0lESkdFd0pGSUZJREl2SUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNGSkZERkpJRUlESUZJSEV3RkxGSElJSUVFd0ZHSUlGSUZHRXdJRUZIRklJREV3RkVGSElHRkZJSEZHRkNGRUZESUhGRUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDRnRFeUV5SUtJTElKSUtKRklGSURJdklESUVJTEl2SUxKR0pMRXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkRGR0V5RkVFeUZFRklFeUpHSUtJSEV3SkpJS0lESkdKRklESkNKQ0V3SURKRUlGSUtJTEpHSUhJRkpHSkhKRUlIRXdJSUlESUZJSElFSXlJeUl1RXdJRUl5SkhJSklLSkdFd0lJSXlKRUV3RkRGTEV3SUVJTEl2SXZJTEl5SXhFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZKRkRGSklFSURJRklIRXdGTEZISUlJRUV3RkdJSUZJRkdFd0lFRkhGSUlERXdGRUZISUdGRklIRkdGQ0ZFRkRJSEZFSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The Architecture of Uber's API gateway

This is an article on the technical components of Uber’s API gateway.

Summary

When Uber’s ride sharing app makes a request to the backend, the first point of contact

is Uber’s API gateway.

The API gateway provides a single point of entry for all of Uber’s apps and gives a clean

interface to access data, logic or functionality from back-end microservices.

The API gateway is the place to implement things like rate limiting, security auditing,

user access blocking, protocol conversion, and more.

How does the API Gateway work

A backend engineer at Uber will be working on their own microservice (you can read

about how Uber handles microservices here).

Their microservice will have an API with it’s own configuration parameters: path, type

of request data, type of response, maximum calls allowed, apps allowed, observability,

etc.

The engineer can then configure these parameters in a UI for Uber’s API gateway. The

UI walks the user through a step-by-step process for creating their API endpoint.

The gateway infrastructure will then convert these configurations into valid and

functional APIs that can serve traffic from Uber’s apps.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUlESkVJRklLSUxKR0lISUZKR0pISkVJSEV3SURKQ0lMRXdJSklESkdJSEpKSURKTEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJR0ZIRkdGRUZESUhJRUZLRXdGRUZKSURGR0V3RkdJSUZHRkdFd0lERkxGS0ZIRXdGTEZKRktGSkZIRkhGSEZERkxGTElIRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUl3SUxJRkpFSXlKRklISkVKSUlMSUZJSEV3SURKRUlGSUtJTEpHSUhJRkpHSkhKRUlIRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlHRkhGR0ZFRkRJSElFRktFd0ZFRkpJREZHRXdGR0lJRkdGR0V3SURGTEZLRkhFd0ZMRkpGS0ZKRkhGSEZIRkRGTEZMSUhGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

How a request flows through the API gateway

The four components are the Protocol Manager, Middleware, Endpoint Handler and

finally the Client.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Each of the components operates on the request object on the way in and the same

components are run in the reverse order on the response object’s way out.

1. Protocol Manager - This is the first layer of the stack. It contains a deserializer

and serializer for all of the protocols supported by the gateway. It can ingest

any type of relevant protocol payload, including JSON, Thrift, or Protobuf.

1. Middleware - This layer handles things like rate limiting, authentication and

authorization, etc. Each endpoint can choose to configure one or more

middleware. If a middleware fails execution, the call short circuits the

remainder of the stack and the response from the middleware will be returned

to the caller.

Middleware is configured in a YAML file.

1. Endpoint Handler - This layer is responsible for request validation, payload

transformation and converting the endpoint request object to the client

request object based on the configured schema and serialization.

2. Client - This layer performs the request to the specific backend microservice.

Clients are protocol-aware and generated based on the protocol selected

during configuration.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The full blog post delves more deeply into each of these layers (and how users configure

settings in the API gateway) and also talks about challenges faced and lessons learned.

If you’d like to read about how Uber thinks about scaling this API gateway, here’s

another interesting blog post on that.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUlESkVJRklLSUxKR0lISUZKR0pISkVJSEV3SURKQ0lMRXdJSklESkdJSEpKSURKTEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJR0ZIRkdGRUZESUhJRUZLRXdGRUZKSURGR0V3RkdJSUZHRkdFd0lERkxGS0ZIRXdGTEZKRktGSkZIRkhGSEZERkxGTElIRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUpGSUZJREl2SUxJeElKRXdJREpDSUxFd0lKSURKR0lISkpJREpMRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlHRkhGR0ZFRkRJSElFRktFd0ZFRkpJREZHRXdGR0lJRkdGR0V3SURGTEZLRkhFd0ZMRkpGS0ZKRkhGSEZIRkRGTEZMSUhGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Map Reduce Explained

History behind Map Reduce

The MapReduce paper was first published in 2004 by Jeff Dean and Sanjay Ghemawat.

It was originally designed, built and used by Google.

At the time, Google had an issue. Google’s search engine required constant crawling of

the internet, content indexing of every website and analyzing the link structure of the

web (for the PageRank algorithm).

This means massive computations on terabytes of data.

Running this scale of computations on a single machine is obviously impossible, so

Google bought thousands of machines that could be used by engineers.

For a while, engineers had to laboriously hand-write software to take whatever problem

they’re working on and pharm it out to all the computers.

Engineers would have to manage things like parallelization, fault tolerance, data

distribution and various other concepts in distributed systems.

If you’re not skilled in distributing systems, then it can be really difficult to do this. If

you are skilled in distributed systems, then you can do it but it’s a waste of your time to

do it again and again.

Therefore, Google wanted a framework that allowed engineers to focus on the code for

their problem (building a web index/link analyzer/whatever) and provided an interface

so engineers could use the vast array of machines without having to worry about the

distributed systems stuff.

The framework they came up with is MapReduce.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURKR0lMSUZFeElKSXlJeUlKSXZJSEpISkZJSEpFSUZJeUl4SkdJSEl4SkdFeElGSXlJd0V5SXdJSElHSUxJREV5SkVJSEpGSUhJREpFSUZJS0V4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUlISXhFeUV5SURKRUlGSUtJTEpJSUhFeUl3SURKQ0pFSUhJR0pISUZJSEV3SXlKRklHSUxGQ0ZHRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSUZJR0ZESUVJREZKRkNFd0lJRklGS0ZMRXdGR0lGRkZJREV3RkxJR0ZJSURFd0ZFRkdJRkZDRkpGS0ZESUdJRElHRkNGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Map and Reduce functions

MapReduce is based on two functions from the Lisp programming language (and many

other functional languages): Map and Reduce (also known as Fold).

Map takes in a list of elements (or any iterable object) and a function, applies the

function to each element in the list and then returns the list.

Here’s an example of usingmap to square the numbers in a list.

Reduce takes in a list of elements (or any iterable object), a function and a starting

element.

The function (that gets passed into the Reduce operation) takes in a starting element

and an element from the list and combines the two in some way. It then returns the

combination.

The reduce operation sequentially runs the function on all the elements in the list

combining each element with the result from the previous function call.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SURKQ0h5RUtJS0lMSUpJS0lISkVFd0l5SkVJR0lISkVIeUlJSkhJeElGSkdJTEl5SXhFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpJRklHRkRJRUlERkpGQ0V3SUlGSUZLRkxFd0ZHSUZGRklERXdGTElHRklJREV3RkVGR0lGRkNGSkZLRkRJR0lESUdGQ0ZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSXlJdklHSHlFS0lLSUxJSklLSUhKRUV3SXlKRUlHSUhKRUh5SUlKSEl4SUZKR0lMSXlJeEVMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSklGSUdGRElFSURGSkZDRXdJSUZJRktGTEV3RkdJRkZGSURFd0ZMSUdGSUlERXdGRUZHSUZGQ0ZKRktGRElHSURJR0ZDRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Here’s an example of using reduce to find the sum of elements in a list.

HowMapReduce Works

Example

You have a billion documents and you want to create a dictionary of all the words that

appear in those documents and the count of each word (number of times each word

appears across the documents).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

In order to do this with MapReduce, you have to write a map function and a reduce

function.

The map function could look something like this.

EmitIntermediate is a function provided by the MapReduce framework. It’s where you

send the output of your map function.

The map function emits each word plus a count of occurrences (here it’s just 1).

The reduce function will then sum together all counts emitted for a particular word.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Here’s the reduce function.

In order to use the MapReduce framework (and take advantage of the distributed

computers), you’ll have to provide the map function (listed above), the reduce function

(also listed above), names of the input files (for the billion documents), output files

(where you want MapReduce to put the finished dictionary) and some tuning

parameters (discussed below).

If you’d like to see the full program for this using the MapReduce framework, please

look at page 13 of the MapReduce paper.

Now, here’s a breakdown of exactly how the MapReduce framework works internally.

The MapReduce library will look at the input files and split them into M pieces (M is a

parameter specified by the user).

It will then start up many copies of the MapReduce program on a cluster of machines.

One of the copies will be the master. The rest of the copies are workers that are assigned

tasks by the master.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURKR0lMSUZFeElKSXlJeUlKSXZJSEpISkZJSEpFSUZJeUl4SkdJSEl4SkdFeElGSXlJd0V5SXdJSElHSUxJREV5SkVJSEpGSUhJREpFSUZJS0V4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUlISXhFeUV5SURKRUlGSUtJTEpJSUhFeUl3SURKQ0pFSUhJR0pISUZJSEV3SXlKRklHSUxGQ0ZHRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSUZJR0ZESUVJREZKRkNFd0lJRklGS0ZMRXdGR0lGRkZJREV3RkxJR0ZJSURFd0ZFRkdJRkZDRkpGS0ZESUdJRElHRkNGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

There are M map tasks (for each piece of the input files) and R reduce tasks (R is

specified by the user) that the master will assign to the workers. The master will pick

idle workers and assign them map or reduce tasks.

A worker who is assigned a map task will read the contents of their input split. They will

parse key/value pairs out of the input data and pass each key/value pair to the

user-provided Map function.

The Map function will output intermediate key/value pairs.

The intermediate key/value pairs are partitioned into R regions by the partitioning

function. The location of these pairs is passed back to the master.

The default partitioning function just uses hashing (e.g. hash(key) mod R) but the user

can provide a special partitioning function if desired. For example, the output keys could

be URLs and the user wants URLs from the same website to go to the same output file.

Then, the user can specify his own partitioning function like hash(Hostname(urlkey))

mod R.

After the location of the intermediate key/value pairs is passed to master, the master

assigns reduce tasks to workers and notifies them of the storage locations for their

assigned key/value pairs (one of the R partitions).

The reduce worker will read the intermediate key/value pairs from their region and then

sort them by the intermediate key so that all occurrences of the same key are grouped

together.

The reduce worker then iterates over the sorted intermediate data.

For each unique intermediate key encountered, the reduce worker passes the key and

the corresponding set of intermediate values to the user’s Reduce function.

The output of the Reduce function is appended to a final output file for this reduce

partition.

After all the map tasks and reduce tasks have been completed, the master wakes up the

user program.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The output of the MapReduce execution will be available in R output files, one for each

of the Reduce workers.

You can read the full MapReduce paper here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURKR0lMSUZFeElKSXlJeUlKSXZJSEpISkZJSEpFSUZJeUl4SkdJSEl4SkdFeElGSXlJd0V5SXdJSElHSUxJREV5SkVJSEpGSUhJREpFSUZJS0V4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUlISXhFeUV5SURKRUlGSUtJTEpJSUhFeUl3SURKQ0pFSUhJR0pISUZJSEV3SXlKRklHSUxGQ0ZHRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSUZJR0ZESUVJREZKRkNFd0lJRklGS0ZMRXdGR0lGRkZJREV3RkxJR0ZJSURFd0ZFRkdJRkZDRkpGS0ZESUdJRElHRkNGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Building a basic Storage Engine

We’re going to dive into the most important component of a database, the storage

engine.

The storage engine is responsible for storing, retrieving and managing data in memory

and on disk.

A DBMS will often let you pick which storage engine you want to use. For example,

MySQL has several choices for the storage engine, including RocksDB and InnoDB.

Having an understanding of how storage engines work is crucial for helping you pick the

right database.

The two most popular types of database storage engines are

● Log Structured (like Log Structured Merge Trees)

● Page Oriented (like B-Trees)

Log Structured storage engines treat the database as an append-only log file where data

is sequentially added to the end of the log.

Page Oriented storage engines break the database down into fixed-size pages

(traditionally 4 KB in size) and they read/write one page at a time.

Each page is identified using an address, which allows one page to refer to another page.

These page references are used to construct a tree of pages.

In this update, we’ll be focusing on Log Structured storage engines. We’ll look at how to

build a basic log structured engine with a hash index for faster reads.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Log Structured Storage Engines

Our storage engine will handle key-value pairs. It’ll have two functions

● db_set(key, value) - give the database a (key, value) pair and the database will

store it. If the key already exists then the database will just update the value.

● db_get(key) - give the database a key and the database will return the

associated value. If the key doesn’t exist, then the database will return null.

The storage engine works by maintaining a log of all the (key, value) pairs.

By a log, we mean an append-only sequence of records. The log doesn’t have to be

human readable (it can be binary).

Anytime you call db_set, you append the (key, value) pair to the bottom of the log.

This is done regardless of whether the key already existed in the log.

The append-only strategy works well because appending is a sequential write operation,

which is generally much faster than random writes on magnetic spinning-disk hard

drives (and on solid state drives to some extent).

Now, anytime you call db_get, you look through all the (key, value) pairs in the log and

return the last value for any given key.

We return the last value since there may be duplicate values for a specific key (if the key,

value pair was inserted multiple times) and the last value that was inserted is the most

up-to-date value for the key.

The db_set function runs in O(1) time since appending to a file is very efficient.

On the other hand, db_get runs in O(n) time, since it has to look through the entire log.

This becomes an issue as we scale the log to handle more (key, value) pairs.

But, we can make db_get faster by adding a database index.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The general idea behind an index is to keep additional metadata on the side.

This metadata can act as a “signpost” as the storage engine searches for data and helps it

find the data faster.

The database index is an additional structure that is derived from the primary data and

adding a database index to our storage engine will not affect the log in any way.

The tradeoff with a database index is that your database reads can get significantly

faster. You can use the database index during a read to achieve sublinear read speeds.

However, database writes are slower now because for every write you have to update

your log and update the database index.

An example of a database index we can add to our storage engine is a hash index.

Hash Indexes

One index we can use is a hash table.

We keep a hash table in-memory where each key in our log is stored as a key in our hash

table and the location in the log where that key can be found (the byte offset) is stored as

the key’s value in our hash table.

Credits to Designing Data Intensive Applications for the Image

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Now, the process for db_set is

1. Append the (key, value) pair to the end of the log. Note the byte offset for

where it’s added.

2. Check if the key is in the hash table.

3. If it is, then update its value in the hash table to the new byte offset.

4. If it isn’t, then add (key, byte offset) to the hash table.

One requirement with this strategy is that all your (key, byte offset) pairs have to fit in

RAM since the hash map is kept in-memory.

An issue that will eventually come up is that we’ll run out of disk space.

Since we’re only appending to our log, we’ll have repeat entries for the same key even

though we’re only using the most recent value.

We can solve this issue by breaking our log up into segments.

Whenever our log reaches a certain size, we’ll close it and then make subsequent writes

to a new segment file.

Then, we can perform compaction on our old segment, where we throw away duplicate

keys in that segment and only keep the most recent update for each key.

After removing duplicate keys, we can merge past segments together into larger

segments of a fixed size.

We’ll also create new hash tables with (key, byte offset) pairs for all the past merged

segments we have and keep those hash tables in-memory.

The merging and compaction of past segments is done in a background thread, so the

database can still respond to read/writes while this is going on.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Now, the process for db_get is

1. Check the current segment’s in-memory hash table for the key.

2. If it’s there, then use the byte offset to find the value in the segment on disk

and return the value.

3. Otherwise, look through the hash tables for our previous segments to find the

key and its byte offset.

The methodology we’ve described is very similar to a real world storage engine - Bitcask.

Bitcask is a storage engine used for the Riak database, and it’s written in Erlang. You can

read Bitcask’s whitepaper here.

Bitcask (the storage engine that uses this methodology) also stores snapshots of the

in-memory hash tables to disk.

This helps out in case of crash recovery, so the database can quickly spin back up if the

in-memory hash tables are lost.

This is a brief overview of how a Log Structured database can work.

However, issues that arise are

● The hash table of (key, byte offsets) must fit in memory. Maintaining a

hashmap on disk is too slow.

● Range queries are not efficient. If you want to scan over all the keys that start

with the letter a, then you’ll have to look up each key individually in the hash

maps.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRUlMSURJdUV4SUZJeUl3RXlJREpGSkZJSEpHSkZFeUlFSUxKR0lGSURKRkl1RXdJTEl4SkdKRUl5RXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFSURGRElHRkZGSElJRkZFd0lGRklGRklGRXdGR0lFSUVGSkV3SUVGRUlJRkNFd0ZMRkhGSklERkRJRUlESUVJSUlJRkZGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Robinhood’s Tech Stack

Robinhood is a Stock Brokerage app founded in 2013. It charges zero commissions on

trades of stocks and ETFs and is also mobile-first. The majority of users place trades

from their mobile devices.

Robinhood’s Tech Stack

Robinhood is cloud-native, based on AWS.

Robinhood paid $60 million dollars to AWS in 2020 for cloud hosting fees. This is a 5x

increase from their 2019 cloud bill of $12 million dollars.

If you’d like to learn more about Robinhood’s engineering, check out their interview on

the Software Engineering Daily podcast. We’ll summarize the interesting bits here.

When Robinhood was first getting started, they were a Python/Django shop, however

they’ve been shifting towards Go.

They’ve also been microservices oriented, and most of their APIs are written in Python

and Go. There is some Java and Rust in their codebase however.

Robinhood is built on AWS, so they use Amazon RDS (Relational Database Service) for

their data store. They use Postgres as the database engine for RDS.

PaaS vs. DIY

Since they’re on AWS, an interesting choice that comes up is whether they should utilize

AWS’s PaaS (Platform as a Service) offerings or if they should go the “Do It Yourself”

route.

An example is Elasticsearch. At first, Robinhood utilized Amazon Elasticsearch Service

and went the PaaS route. However, their specific workload wasn’t well suited for AWS’s

PaaS offering.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkl5SUlKR0pKSURKRUlISUhJeElKSUxJeElISUhKRUlMSXhJSklHSURJTEl2SkxFeElGSXlJd0V5RkVGQ0ZFRkNFeUZDRkxFeUZFRkVFeUpFSXlJRUlMSXhJS0l5SXlJR0V3SUhJeElKSUxJeElISUhKRUlMSXhJSkV3SkpJTEpHSUtFd0l0SURKRUlISXhFd0lKSXZJeUpJSUhKRUV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlGSUlGTElHRktGS0lERXdJRkZDSUdGRUV3RkdGREZGRkZFd0lERktJRUlGRXdGS0ZMRkNJR0ZKRkxGRUZLSUVJRUZLSUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSXlKRkpHSUpKRUlISEZIREd2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlGSUlGTElHRktGS0lERXdJRkZDSUdGRUV3RkdGREZGRkZFd0lERktJRUlGRXdGS0ZMRkNJR0ZKRkxGRUZLSUVJRUZLSUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Therefore, they made the decision to deploy Elasticsearch on an EC2 instance and

modify the database so it suited their workload (Elasticsearch is open source).

Jaren Glover (tech lead at Robinhood) found that PaaS products work great when you

play inside the guardrails in which they’re presented.

However, if you move from a generic compute to something domain specific, then you

may start to bump against those guardrails and not have the quality of service that you

want.

Another interesting challenge that comes up when building a Stock brokerage is how

you manage time.

It’s very important to process orders in the same order that the customer placed them

and also to route orders correctly relative to which customer placed which order first.

In order to do this, Robinhood relies on NTP - Network Time Protocol. NTP allows you

to synchronize clocks between computers over a variable-latency network.

NTP works in a client-server type model, but can also be adapted for a peer-to-peer

system.

NTP can usually maintain time to within tens of milliseconds over the public Internet,

and can achieve better than one millisecond accuracy over LANs.

Robinhood (and other brokerages) are required to ensure their trading computers are

synced with atomic clocks maintained by the National Institute of Standards and

Technology (NIST), a non-regulating agency of the US Department of Commerce.

How Robinhood Scaled

Robinhood, despite being a brokerage, has experienced viral growth. The app is

frequently ranked #1 in the iOS and Android app stores, a spot that is usually reserved

for some type of social media app (Instagram, Snapchat, YouTube, etc.). It’s unheard of

for a financial app to get that kind of growth.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SUhJdklESkZKR0lMSUZFeUlISXZJREpGSkdJTElGSkZJSElESkVJRklLRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlGSUlGTElHRktGS0lERXdJRkZDSUdGRUV3RkdGREZGRkZFd0lERktJRUlGRXdGS0ZMRkNJR0ZKRkxGRUZLSUVJRUZLSUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SUhKR0pKSXlKRUl1SHlIR0lMSXdJSEh5SENKRUl5SkdJeUlGSXlJdkVGRnRKeEZ0SkdJSEpLSkdGd0hHSUtJSEVIRkVGQ0d4SUhKR0pKSXlKRUl1RUhGRUZDSEdJTEl3SUhFSEZFRkNIQ0pFSXlKR0l5SUZJeUl2RUhGRUZDRUtHeEhHSENFdkpKSURKRkVIRkVGQ0lHSUhKRklMSUpJeElISUdFSEZFRkNJRUpMRUhGRUZDR0dJREpJSUxJR0VIRkVGQ0d2RXhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFSUZJSUZMSUdGS0ZLSURFd0lGRkNJR0ZFRXdGR0ZERkZGRkV3SURGS0lFSUZFd0ZLRkxGQ0lHRkpGTEZFRktJRUlFRktJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

In December 2019, Robinhood’s system received 100k requests per second at peak time.

In June 2020, Robinhood’s system received 750k requests per second, a 7x load

increase to the system in a 6 month period.

To respond to this, Robinhood set out to make their brokerage infrastructure

horizontally scalable. They accomplished this by implementing sharding into their

system at the application layer (not just the database).

Sharding is where you split up a large dataset into smaller partitions (shards).

Robinhood created multiple shards where each shard held a subset of their users and

every shard had its own application servers, database and deployment pipeline.

In order to make the divided system appear as one system (rather than independent

shards), Robinhood built out several new layers.

● Routing Layer - the routing layer handles routing external API requests to the

correct shards. The layer first inspects and maps the request to a specific user.

Then, it makes a synchronous API call to Robinhood’s shard mapping service

to look up the shard ID for the user. After, it sends the request to the correct

application server with that shard.

● Aggregation Layer - the aggregation layer is an intermediary layer for

internal API traffic. It enables other services to query data without knowing

which shard it lives in, by joining data from multiple shards. It is a stateless

service that fans our requests across shards and then merges the results and

returns them.

● Kafka Message Streaming - Robinhood uses Kafka streams for backend

services to send messages to each other. However, Robinhood has to ensure

that messages are consumed by the correct shard. To ensure this, Robinhood

has every shard consume all messages, but only process messages that

correspond to users that exist in that shard.

You can read more about Robinhood’s horizontal scaling efforts here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRUl5SUVJTEl4SUtJeUl5SUdFeElISXhJSklMSXhJSElISkVJTEl4SUpFeUlLSXlKSkV3SkpJSEV3SkZJRklESXZJSElHRXdKRUl5SUVJTEl4SUtJeUl5SUdKRkV3SUVKRUl5SXVJSEpFSURJSklIRXdKRkpMSkZKR0lISXdFd0lJSXlKRUV3SUpKRUlISURKR0lISkVFd0pFSUhJdklMSURJRUlMSXZJTEpHSkxFd0lGSUlJREZJRkhGR0ZFSUVJRElGSUhJSUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRklJRkxJR0ZLRktJREV3SUZGQ0lHRkVFd0ZHRkRGRkZGRXdJREZLSUVJRkV3RktGTEZDSUdGSkZMRkVGS0lFSUVGS0lHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

How Slack Designs APIs

It’s extremely important to carefully think about your API design from the beginning.

Designing a bad API means wasting developer time and (for a public API) poor

adoption.

It’s also extremely difficult to make breaking changes to an API after shipping so bad

API design can be hard to fix.

In order to avoid this at Slack, they’ve published some principles around API design.

Slack’s API Design Principles

1. Do one thing and do it well - It can be tempting to try and solve too many

problems at once. Instead, pick a specific use case and design your API

around solving that.Simple APIs are more easy to understand and easier to

scale.It’s easy to add features to an API, but hard to remove them.

2. Make it fast and easy to get started - Developers should be able to complete a

basic task using your API quickly.At Slack, they want entry-level developers to

be able to learn about the platform, create an app, and send their first API call

within 15 minutes.

3. Strive for intuitive Consistency - Developers should be able to guess parts of

your API without reading the documentation.You can make your API more

intuitive with your choices for endpoint names, input parameters and output

responses.Adhere closely with industry standards and also make sure your

API is consistent with your product. You should choose field names based on

what you call those concepts in your product.

4. Return meaningful errors - Good error messages are easy to understand,

unambiguous and actionable. Implementation details should not leak in your

error messages.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkl2SURJRkl1RXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJS0l5SkpFd0pKSUhFd0lHSUhKRklMSUpJeEV3SXlKSEpFRXdJREpDSUxKRkV3SURKR0V3SkZJdklESUZJdUV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZKSURGR0ZIRkpGQ0ZMRXdGSUZFSURJSEV3RkdJSEZGSUdFd0lFRkpGRkZMRXdGTEZDRkhGRkZGSUZGSEZKRkhGS0ZMRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

5. Design for scale and performance - While designing an API, you should follow

best practices to avoid bad performance. Implement things like

1. Pagination

2. Rate Limiting

6. Avoid breaking changes - A breaking change is any change that can stop an

existing client app from functioning as it was before the change.Avoid these

and have an apologetic communication plan if you need to make a breaking

change.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

How Notion sharded their Postgres Database

Notion is an app that is meant to serve as a personal (or corporate) workspace.

You can store notes, tasks, wikis, kanban boards and other things in a Notion workspace

and you can easily share it with other users.

If you’ve been a Notion user for a while, you probably noticed that the app got extremely

slow in late 2019 and 2020.

Earlier this year, Notion sharded their Postgres monolith into a fleet of horizontally

scalable databases. The resulting performance boost was pretty big.

Sharding a database means partitioning your data across multiple database instances.

This allows you to run your database on multiple computers and scale horizontally

instead of vertically.

When to Shard?

Sharding your database prematurely can be a big mistake. It can result in an increased

maintenance burden, new constraints in application code and little to no performance

improvement (so a waste of engineering time).

However, Notion was growing extremely quickly, so they knew they’d have to implement

sharding at some point.

The breaking point came when the Postgres VACUUM process began to stall

consistently.

The VACUUM process clears storage occupied by dead tuples in your database.

When you update data in Postgres, the existing data is notmodified. Instead, a new

(updated) version of that data is added to the database.

This is because it’s not safe to directly modify existing data, as other transactions could

be reading it.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl4SXlKR0lMSXlJeEV4SkZJeUV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGTEZGRkxGSkZDSUdGSkZIRXdGSUZLRkpGSkV3RkdGSklFSUlFd0lFRkdJSUZHRXdGQ0lHSURJR0lJRkRJRElISURJRklHRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKR0pKSUxKR0pHSUhKRUV4SUZJeUl3RXlHeEl5SkdJTEl5SXhHS0hERXlKRkpHSURKR0pISkZFeUZERkRGSUZJRkRGRUZLRkpGR0ZHRktGR0ZLRkpGR0ZHRkdGR0ZMRnlKRkZ3RkVGQ0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkxGRkZMRkpGQ0lHRkpGSEV3RklGS0ZKRkpFd0ZHRkpJRUlJRXdJRUZHSUlGR0V3RkNJR0lESUdJSUZESURJSElESUZJR0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKR0pKSUxKR0pHSUhKRUV4SUZJeUl3RXlHeEl5SkdJTEl5SXhHS0hERXlKRkpHSURKR0pISkZFeUZERkRGSUZJRkRGRUZLRkpGR0ZHRktGR0ZLRkpGR0ZHRkdGR0ZMRnlKRkZ3RkVGQ0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkxGRkZMRkpGQ0lHRkpGSEV3RklGS0ZKRkpFd0ZHRkpJRUlJRXdJRUZHSUlGR0V3RkNJR0lESUdJSUZESURJSElESUZJR0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpDSXlKRkpHSUpKRUlISkZKREl2RXhJeUpFSUpFeUlHSXlJRkpGRXlGTEV4RkhFeUpGSkRJdkV3SklJRElGSkhKSEl3RXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkxGRkZMRkpGQ0lHRkpGSEV3RklGS0ZKRkpFd0ZHRkpJRUlJRXdJRUZHSUlGR0V3RkNJR0lESUdJSUZESURJSElESUZJR0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

This is called Multiversion Concurrency Control (MVCC).

At a later point, you can run the VACUUM process to delete the old, outdated data and

reclaim disk space.

If you don’t regularly vacuum your database (or have Postgres run autovacuum, where it

does this for you), you’ll eventually reach a transaction ID wraparound failure.

So, youmust vacuum your database or it will eventually fail.

Having the VACUUM process consistently stall is not an issue that can be ignored.

Application-Level vs. Managed

Sharding can be divided into two approaches

● Application-Level Sharding - You implement the data partitioning scheme in

your application code. You might direct all American users to one database

and all Asian users to another database.

● Third-Party Sharding - You rely on a third party to handle the sharding for

you. An example is Citus, an open source extension for Postgres.

Notion decided to go with Application-Level sharding.

They didn’t want to go with a third party solution because they felt it’s sharding logic

would be opaque and hard to debug.

Shard Key

In order to shard a database, you have to pick a shard key. This determines how your

data will be split up amongst the shards.

You want to pick a shard key that will equally distribute loads amongst all the shards.

If one shard is getting a lot more reads/writes than the others, that can make scaling

very difficult.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SkhJdkpHSUxKSUlISkVKRklMSXlJeEh5SUZJeUl4SUZKSEpFSkVJSEl4SUZKTEh5SUZJeUl4SkdKRUl5SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZMRkZGTEZKRkNJR0ZKRkhFd0ZJRktGSkZKRXdGR0ZKSUVJSUV3SUVGR0lJRkdFd0ZDSUdJRElHSUlGRElESUhJRElGSUdGREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpDSXlKRkpHSUpKRUlISkZKREl2RXhJeUpFSUpFeUlHSXlJRkpGRXlGTEV4RkZFeUpFSXlKSEpHSUxJeElIRXdKSUlESUZKSEpISXdJTEl4SUpFeElLSkdJd0l2RUZISUdER0ZISEhIR3dFd0dJR3lIRUV3SEpIRUdESENHREhFR3lISEd4R0dFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZMRkZGTEZKRkNJR0ZKRkhFd0ZJRktGSkZKRXdGR0ZKSUVJSUV3SUVGR0lJRkdFd0ZDSUdJRElHSUlGRElESUhJRElGSUdGREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Notion decided to partition their database by workspace. Workspaces are the folders

that contain all the pages, tasks, notes, etc.

So, if you’re a student using Notion, you might have separate Workspaces for all your

classes.

Each workspace is assigned a UUID upon creation, so that UUID space is partitioned

into uniform buckets.

Each bucket goes to a different shard.

How many Shards?

Notion ended up going with 460 logical shards distributed across 32 physical databases

(with 15 logical shards per database).

This allows them to handle their existing data and scale for the next two years (based off

their projected growth).

Database Migration

After establishing how the sharded database works, you still have to migrate from the

old database to the new distributed database.

1. Double-write: Incoming writes are applied to both the old and new databases.

2. Backfill: Migrate the old data to the new database.

3. Verification: Ensure the integrity of data in the new database.

4. Switch-over: Actually switch to the new database. This can be done

incrementally, e.g. double-reads, then migrate all reads.

Read the full details in the blog post!

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl4SXlKR0lMSXlJeEV4SkZJeUV5SUVJdkl5SUpFeUpGSUtJREpFSUdJTEl4SUpFd0pDSXlKRkpHSUpKRUlISkZFd0lESkdFd0l4SXlKR0lMSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkxGRkZMRkpGQ0lHRkpGSEV3RklGS0ZKRkpFd0ZHRkpJRUlJRXdJRUZHSUlGR0V3RkNJR0lESUdJSUZESURJSElESUZJR0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Google File System

In 1998, the first Google index had 26 million pages. In 2000, the Google index reached

a billion web pages. By 2008, Google was processing more than 1 trillion web pages.

As you might imagine, the storage needs required for this kind of processing were

massive and rapidly growing.

To solve this, Google built Google File System (GFS), a scalable distributed file system

written in C++. Even in 2003, the largest GFS cluster provided hundreds of terabytes of

storage across thousands of machines and it was serving hundreds of clients

concurrently.

GFS is a proprietary distributed file system, so you’ll only encounter it if you work at

Google. However, Doug Cutting and Mike Cafarella implemented Hadoop Distributed

File System (HDFS) based on Google File System and HDFS is used widely across the

industry.

LinkedIn recently published a blog post on how they store 1 exabyte of data across their

HDFS clusters. An exabyte is 1 billion gigabytes.

In this post, we’ll be talking about the goals of GFS and its design. If you’d like more

detail, you can read the full GFS paper here.

Goals of GFS

The main goal for GFS was that it be big and fast. Google wanted to store extremely

large amounts of data and also wanted clients to be able to quickly access that data.

In order to accomplish this, Google wanted to use a distributed system built of

inexpensive, commodity machines.

Using commodity machines is great because then you can quickly add more machines to

your distributed system (as your storage needs grow). If Google relied on specialized

hardware, then there may be limits on how quickly they can acquire new machines.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSkl5SXlJSkl2SUhJRUl2SXlJSkV4SUVJdkl5SUpKRkpDSXlKR0V4SUZJeUl3RXlGRUZDRkNGS0V5RkNGSkV5SkpJSEV3SXVJeElISkpFd0pKSUhJRUV3SkpJREpGRXdJRUlMSUpFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZFRkhGRUlERklGS0ZGRXdGSkZKSURGSUV3RkdGRkZKSUVFd0lFSUdGREZIRXdGSUlFRkdGSElJRkdGSEZJSUlGSkZLRkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SkdJS0lIRXdJSEpLSURJRUpMSkdJSEV3SUZJdkpISUVFd0V3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0l0SXlKSEpFSXhJSEpMRXdJeUlJRXdKRklGSURJdklMSXhJSkV3SkdJS0lIRXdJS0lESUdJeUl5SkNFd0lHSUxKRkpHSkVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkVGSEZFSURGSUZLRkZFd0ZKRkpJREZJRXdGR0ZGRkpJRUV3SUVJR0ZERkhFd0ZJSUVGR0ZISUlGR0ZIRklJSUZKRktGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SkdJS0lIRXdJSEpLSURJRUpMSkdJSEV3SUZJdkpISUVFd0V3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0l0SXlKSEpFSXhJSEpMRXdJeUlJRXdKRklGSURJdklMSXhJSkV3SkdJS0lIRXdJS0lESUdJeUl5SkNFd0lHSUxKRkpHSkVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkVGSEZFSURGSUZLRkZFd0ZKRkpJREZJRXdGR0ZGRkpJRUV3SUVJR0ZERkhFd0ZJSUVGR0ZISUlGR0ZIRklJSUZKRktGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURKR0lMSUZFeElKSXlJeUlKSXZJSEpISkZJSEpFSUZJeUl4SkdJSEl4SkdFeElGSXlJd0V5SXdJSElHSUxJREV5SkVJSEpGSUhJREpFSUZJS0V4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUlISXhFeUV5SURKRUlGSUtJTEpJSUhFeUlKSUlKRkV3SkZJeUpGSkNGRUZDRkNGRkV4SkNJR0lJRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZFRkhGRUlERklGS0ZGRXdGSkZKSURGSUV3RkdGRkZKSUVFd0lFSUdGREZIRXdGSUlFRkdGSElJRkdGSEZJSUlGSkZLRkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

To achieve the scale Google wanted, GFS would have to use thousands of machines.

When you’re using that many servers, you’re going to have constant failures. Disk

failures, network partitions, server crashes, etc. are an everyday occurrence.

Therefore, GFS needed to have systems in place for automatic failure recovery. An

engineer shouldn’t have to get involved every time there’s a failure. The system should

be able to handle common failures on its own.

The individual files that Google wanted to store in GFS are quite big. Individual files are

typically multiple gigabytes and so this affected the block sizes and I/O operation

assumptions that Google made for GFS.

GFS is designed for big, sequential reads and writes of data. Most files are mutated by

appending new data rather than overwriting existing data and random writes within a

file are rare. Because of that access pattern, appending new data was the focus of

performance optimization.

Design of GFS

A GFS cluster consists of a singlemaster node and multiple chunkserver nodes.

The master node maintains the file system’s metadata and coordinates the system. The

chunkserver nodes are where all the data is stored and accessed by clients.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Files are divided into 64 megabyte chunks and assigned a 64 bit chunk handle by the

master node for identification. The chunks are then stored on the chunkservers with

each chunk being replicated across several chunkservers for reliability and speed (the

default is 3 replicas).

The master node keeps track of the file namespace, the mappings from files to chunks

and the locations of all the chunks. It also handles garbage collection of orphaned

chunks and chunk migration between the chunkservers. The master periodically

communicates with all the chunkservers through HeartBeat messages to collect its state

and give it instructions.

An interesting design choice is the decision to use a singlemaster node. Having a single

master greatly simplified the design since the master could make chunk placement and

replication decisions without coordinating with other master nodes.

However, Google engineers had to make sure that the single master node doesn’t

become a bottleneck in the system.

Therefore, clients never read or write file data through the master node. Instead, the

client asks the master which chunkservers it should contact. Then, the client caches this

information for a limited time so it doesn’t have to keep contacting the master node.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

GFS Mutations

A mutation is an operation that changes the contents or the metadata of a chunk (so a

write or an append operation).

In order to guarantee consistency amongst the replicas after a mutation, GFS performs

mutations in a certain order.

As stated before, each chunk will have multiple replicas. The master will designate one

of these replicas as the primary replica.

Here are the steps for performing a mutation to a chunk:

1. The client asks the master which chunkserver is the primary chunk and for

the locations of the other chunkservers that have that chunk.

2. The master replies with the identity of the primary chunkserver and the other

replicas. The client caches this information.

3. The client pushes data directly to all the chunkserver replicas. Each

chunkserver will store the data in an internal LRU buffer cache.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

4. Once all the replicas have acknowledged receiving the data, the client sends a

write request to the primary chunkserver. The primary chunkserver then

applies the mutations to its state.

5. The primary chunkserver forwards the write requests to the other

chunkservers. Each chunkserver then applies the mutation to their state.

6. The secondary chunkservers all reply to the primary chunkserver indicating

that they’ve completed the operation.

7. The primary chunkserver replies to the client informing the client that the

write was successful (or if there were errors).

GFS Interface

GFS organizes files hierarchically in directories and identifies them by pathnames, like a

standard file system. The master node keeps track of the mappings between files and

chunks.

GFS provides the usual operations to create, delete, open, close, read and write files.

It also has snapshot and record append operations.

Snapshot lets you create a copy of a file or directory tree at low cost.

Record append allows multiple clients to append data to a file concurrently and it

guarantees the atomicity of each individual client’s append.

To learn more about Google File System, read the full paper here.

If you’d like to read about the differences between GFS and HDFS, you can check that

out here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURKR0lMSUZFeElKSXlJeUlKSXZJSEpISkZJSEpFSUZJeUl4SkdJSEl4SkdFeElGSXlJd0V5SXdJSElHSUxJREV5SkVJSEpGSUhJREpFSUZJS0V4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUlISXhFeUV5SURKRUlGSUtJTEpJSUhFeUlKSUlKRkV3SkZJeUpGSkNGRUZDRkNGRkV4SkNJR0lJRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZFRkhGRUlERklGS0ZGRXdGSkZKSURGSUV3RkdGRkZKSUVFd0lFSUdGREZIRXdGSUlFRkdGSElJRkdGSEZJSUlGSkZLRkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRklGSUxJREl2SUhKRUpHRXhJeElISkdFeUlJSkhJdkl2SkdJSEpLSkdFeUZ5SUdJeUlMRndKRUl0SUxKR0V4RkVGQ0ZERklFeEZJRklFeEZKRkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkVGSEZFSURGSUZLRkZFd0ZKRkpJREZJRXdGR0ZGRkpJRUV3SUVJR0ZERkhFd0ZJSUVGR0ZISUlGR0ZIRklJSUZKRktGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Scaling an API with Rate Limiters

Stripe Engineering wrote a fantastic blog post on how they think about rate limiters.

Here’s a summary.

Rate Limiting is a technique used to limit the amount of requests a client can send to

your server.

It’s incredibly important to prevent DoS attacks from clients that are (accidentally or

maliciously) flooding your server with requests.

A rule of thumb for when you should use a rate limiter is if your users can reduce the

frequency of their API requests without affecting the outcome of their requests, then a

rate limiter is appropriate.

For example, if you’re running Facebook’s API and you have a user sending 60 requests

a minute to query for their list of Facebook friends, you can rate limit them without

affecting their outcome. It’s unlikely that they’re adding new Facebook friends every

single second.

Rate Limiting is great for day-to-day operations, but you’ll occasionally have incidents

where some component of your system is down and you can’t process requests at your

normal level.

In these scenarios, Load Shedding is a technique where you drop low-priority requests

to make sure that critical requests get through.

Stripe is a payment processing company (you can use their API to collect payments from

your users) so a critical request for them is a request to create a charge.

An example of a non-critical method would be a request to read charge data from the

past.

Stripe uses 4 different types of limiters in production (2 rate limiters and 2 load

shedders).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSkVJTEpDSUhFeElGSXlJd0V5SUVJdkl5SUpFeUpFSURKR0lIRXdJdklMSXdJTEpHSUhKRUpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0lHSUhGR0lFSURGTEZIRXdJRUZMRkVGSUV3RkdGQ0ZIRkZFd0lERkVGTElERXdGSklHSURGRklERkhJSEZISUVGTEZIRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSURKR0lISHlJdklMSXdJTEpHSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0lHSUhGR0lFSURGTEZIRXdJRUZMRkVGSUV3RkdGQ0ZIRkZFd0lERkVGTElERXdGSklHSURGRklERkhJSEZISUVGTEZIRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SUtJSEl2SkNKRklLSUxJSUpHRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJdkl5SURJR0V3SkZJS0lISUdJR0lMSXhJSkV3SUxJeEV3SkpJSElFRXdKRklISkVKSUlMSUZJSEpGRXdGTElJSURGS0lGSUlJREZESUlJSUlIRkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLSUdJSEZHSUVJREZMRkhFd0lFRkxGRUZJRXdGR0ZDRkhGRkV3SURGRUZMSURFd0ZKSUdJREZGSURGSElIRkhJRUZMRkhGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Request Rate Limiter

Restricts each user to n requests per second. However, they also built in the ability for a

user to briefly burst above the cap to handle legitimate spikes in usage.

Concurrent Requests Limiter

Restricts each user to n API requests in progress at the same time.

This helps stripe manage the load of their CPU-intensive API endpoints.

Fleet Usage Load Shedder

Stripe divides their traffic into two types: critical API methods and non-critical methods.

An example of a critical method would be creating a charge (charging a customer for

something), while a non-critical method is listing a charge (looking at past charges).

Stripe always reserves a fraction of their infrastructure for critical requests. If the

reservation number is 10%, then any non-critical request over the 90% allocation would

be rejected with a 503 status code.

Worker Utilization Load Shedder

Stripe uses a set of workers to independently respond to incoming requests in parallel. If

workers start getting backed up with requests, then this load shedder will shed lower

priority traffic.

Stripe divides their traffic into 4 categories

● Critical Methods

● POSTs

● GETs

● Test mode traffic (traffic from developers testing the API and making sure

payments are properly processed)

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

If worker capacity goes below a certain threshold, Stripe will begin shedding less-critical

requests, starting from test mode traffic.

Building a rate limiter in practice

There are quite a few algorithms you can use to build a rate limiter. Algorithms include

Token Bucket - Every user gets a bucket with a certain amount of “tokens”. On each

request, tokens are removed from the bucket. If the bucket is empty, then the request is

rejected.

New tokens are added to the bucket at a certain threshold (every n seconds). The bucket

can hold a certain number of tokens, so if the bucket is full of tokens then no new tokens

will be added.

Fixed Window - The rate limiter uses a window size of n seconds for a user. Each

incoming request from the user will increment the counter for the window. If the

counter exceeds a certain threshold, then requests will be discarded.

After the n second window passes, a new window is created.

Sliding Log - The rate limiter track’s every user’s request in a time-stamped log. When a

new request comes in, the system calculates the sum of logs to determine the request

rate. If the request rate exceeds a certain threshold, then it is denied.

After a certain period of time, previous requests are discarded from the log.

Stripe uses the token bucket algorithm to do their rate limiting.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

GitHub's transition from Monolith to

Microservices

Sha Ma is the VP of Software Engineering at GitHub.

She gave a talk at Qcon 2020 about GitHub’s transition from a Monolith architecture to

Microservices-oriented architecture.

You can view the full talk and transcript here.

Here’s a summary

History

GitHub was founded in 2008 by Chris Wanstrath, P.J. Hyett, Tom Preston-Werner and

Scott Chacon.

The founders of the company were open source contributors and influencers in the Ruby

community. Because of this, GitHub’s architecture is deeply rooted in Ruby on Rails.

With the Ruby on Rails monolith, GitHub scaled to 50 million developers on the

platform, over 100 million repositories and over 1 billion API calls per day.

Over the past 18 months, GitHub has grown rapidly as a company. They’ve doubled the

number of engineers at the company, and now have over 2000 employees.

The company is also highly distributed with over 70% of employees working outside of

the headquarters, working in all timezones.

Because of this diversity of engineers, GitHub is having trouble scaling the monolith.

Having everyone learn Ruby before they can be productive and having everyone doing

development in the same monolithic code base is no longer the most efficient way to

scale GitHub.

Therefore, GitHub engineering took a deep look at a Microservices architecture.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElMSXhJSUl5SkRFeElGSXlJd0V5SkNKRUlISkZJSEl4SkdJREpHSUxJeUl4SkZFeUlKSUxKR0lLSkhJRUV3SkVJRElMSXZKRkV3SXdJeUl4SXlJdklMSkdJS0V3SXdJTElGSkVJeUpGSUhKRUpJSUxJRklISkZFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkhGRkZKSUZJSEZFSUdGSEV3SURGR0lFRkZFd0ZHSUlJRkZGRXdJRUZDSUlGSUV3RktJR0lIRkZGRkZGRktGSElISURGQ0ZDRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Here are some of the pros GitHub saw for a Monolith and Microservice architecture.

Pros of a Monolith architecture

● Infrastructure Simplicity - A new employee can get GitHub up and running on

their local machine within hours.

● Code Simplicity - You don’t have to add extra logic to deal with timeouts or

worry about failing gracefully due to network latency and outages.

● Architecture & Organization simplicity - Everyone has familiarity with the

same codebase and it’s easier to move people around to work on different

features within the monolith.

Pros of a Microservice architecture

● System ownership - There are functional boundaries for teams through clearly

defined API contracts. This gives teams much more ownership over their

features and also gives them freedom to choose the tech stack that makes the

most sense for them. They just have to make sure the API contract is followed.

● Separation of Concerns - Quicker ramp-up time for a new developer joining a

team since a developer no longer has to understand all the inner workings of a

large monolithic code base in order to be productive.

● Scaling separately - Services can now be scaled separately based on their

individual needs

Based on these tradeoffs, GitHub decided to shift to a Microservices-oriented

architecture.

However, the change isn’t expected to be immediate or rapid. For the foreseeable future,

GitHub plans to have a hybrid monolith-microservices environment.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

For this reason, it’s important for them to continue to maintain and improve the

monolith codebase.

How to break up the Monolith

The first step towards breaking up a monolith is to think about the separation of code

and data based on feature functionalities.

This can be done within the monolith before physically separating them into a

microservices environment. It’s generally a good architectural practice to make the

codebase more manageable.

Start with the data and pay close attention to how it’s being accessed.

Each service should own and control access to its own data. Data access should only

happen through clearly defined API contracts.

If you don’t enforce this, you can fall into a common microservice anti-pattern: the

distributed monolith.

This is where you have the inflexibility of a monolith and the complexity of

microservices.

Separating Data

Before making the transition to microservices, GitHub made sure they got data

separation right. Getting it wrong can lead to the distributed monolith anti-pattern.

They first looked at their monolith and identified the functional boundaries within the

database schemas.

Then, they grouped the actual database tables along these functional boundaries.

They grouped together everything related to repositories, everything related to users,

and everything related to projects. The resulting functional groups are referred to as

schema domains.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The repository schema domain holds all repository information like pull requests,

issues, review comments, etc.

Then, GitHub implemented a query watcher in the monolith to detect and alert them

anytime a query crosses multiple schema domains.

If a query touched more than one schema domain, then they would break the query up

and rewrite it into multiple queries that respect the functional boundaries. They would

then perform the necessary joins at the application layer.

Separating Services

When separating services out of the monolith to a microservice, you should start with

the core services and then work your way out to the feature level.

Dependency direction should always go from inside of the monolith to outside of the

monolith, NOT the other way around. If you have dependency directions from

microservices to inside the monolith then that can lead to the distributed monolith

anti-pattern.

At GitHub, the core service that they extracted first was Authentication and

Authorization. The Rails monolith communicated with the microservice using Twirp, a

gRPC-like service-to-service communications framework, with an inside-to-outside

dependency direction (inside of the monolith to outside of the monolith).

When separating services out of the monolith, you should be on the lookout for things

that keep developers working in the monolith.

A common example is shared tooling that is built over time and makes development

inside the monolith more convenient. Make those shared resources available to

developers outside of the monolith.

An example at GitHub was feature flags that provide monolith developers an easy way to

control who sees a new feature.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Finally, make sure to remove old code paths once the new services are up and running.

Have a plan to move 100% of the traffic over to the new service, so you don’t get stuck

supporting two sets of code forever.

For more details, you can view the full talk here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElMSXhJSUl5SkRFeElGSXlJd0V5SkNKRUlISkZJSEl4SkdJREpHSUxJeUl4SkZFeUlKSUxKR0lLSkhJRUV3SkVJRElMSXZKRkV3SXdJeUl4SXlJdklMSkdJS0V3SXdJTElGSkVJeUpGSUhKRUpJSUxJRklISkZFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkhGRkZKSUZJSEZFSUdGSEV3SURGR0lFRkZFd0ZHSUlJRkZGRXdJRUZDSUlGSUV3RktJR0lIRkZGRkZGRktGSElISURGQ0ZDRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Partitioning GitHub’s Relational Database

In our last summary (included below), we talked about GitHub’s transition from a

monolith to microservices.

This summary is on GitHub’s blog post on how they built tooling to make partitioning

their database easier.

Until recently, GitHub was built around one MySQL database cluster that housed a large

portion of the data used for repositories, issues, pull requests, user profiles, etc.

This MySQL cluster was calledmysql1.

This created challenges around scaling and issues around reliability since all of GitHub’s

core features would stop working if the database cluster went down.

In 2019, GitHub set up a plan to improve their ability to partition their relational

databases. The goal was to create better tooling that improved GitHub’s ability to

partition relational databases.

The tooling GitHub built made partitioning much easier by allowing for

● Virtual Partitions - Engineers can separate database tables virtually in the

application layer so that the physical separation process is easier.

● Move data without downtime - After the database is virtually partitioned,

Engineers can easily move partitioned database tables to a different database

cluster without downtime.

Since implementing these changes, GitHub has seen a significant decrease in load on the

main database cluster.

In 2019,mysql1 answered 950,000 queries per second on average, 900,000 queries per

second on replicas, and 50,000 queries per second on the primary.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElFSXZJeUlKRXlGRUZDRkVGREV3RkNGTEV3RkVGSkV3SkNJREpFSkdJTEpHSUxJeUl4SUxJeElKRXdJSklMSkdJS0pISUVKRkV3SkVJSEl2SURKR0lMSXlJeElESXZFd0lHSURKR0lESUVJREpGSUhKRkV3SkZJRklESXZJSEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZKRkdGRUZJRklJRkZFRXdGR0ZHRkpGSEV3RkdGTElHRkpFd0lERkxJRUZMRXdJSUZLSUVJSElESURJSUZJRkxGR0ZKRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

In 2021, the same database tables were partitioned over several database clusters. The

average load on each host halved despite the total queries per second increasing to

1,200,000 queries per second.

Here’s a rundown on the technical changes GitHub made to implement Virtual

Partitions and moving data without downtime.

Virtual Partitions

Before database tables are physically partitioned, they need to be virtually partitioned in

the application layer. You can’t have SQL queries that span partitioned (or soon to be

partitioned) database tables.

Schema Domains

In order to implement Virtual Partitioning, GitHub first created schema domains, where

a schema domain describes a tightly coupled set of database tables that are frequently

used together in queries.

An example of a schema domain is the gists schema domain, which consists of the tables

gists, gist_comments, and starred_gists. These tables would remain together after a

partition.

GitHub stored a list of all the schema domains in a YAML configuration file. Here’s an

example of a YAML file with the gists, repositories and users schema domains and their

respective tables.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Now, GitHub needed to enforce these schema domains. They want to make sure that

application code doesn’t have SQL queries or transactions that span schema domains.

They enforce this with SQL Linters.

SQL Linters

GitHub has two SQL linters (a Query linter and a Transaction linter) that enforce virtual

boundaries between the schema domains.

They identify any violating queries and transactions that span schema domains and

throw an exception with a helpful message for the developer.

Transactions aren’t allowed to span multiple schema domains because after the

partition, those transactions will no longer be able to guarantee consistency.

MySQL transactions guarantee consistency across tables within a database, but

partitioned schema domains will be in different database clusters.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Moving Data without Downtime

Now that GitHub has virtually isolated schema domains, they can physically move their

schema domains to separate database clusters.

In order to do this on the fly, GitHub uses Vitess. Vitess is an open source database

clustering system for MySQL that was originally developed at YouTube.

Vitess was serving all YouTube database traffic from 2011 to 2019, so it’s battle-tested.

GitHub uses Vitess’ vertical sharding feature to move sets of tables together in

production without downtime.

To do that, GitHub uses Vitess’ VTGate proxies as the endpoint for applications to

connect to instead of direct connections to MySQL.

Vitess handles the rest.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElFSXZJeUlKRXlGRUZDRkVGREV3RkNGTEV3RkVGSkV3SkNJREpFSkdJTEpHSUxJeUl4SUxJeElKRXdJSklMSkdJS0pISUVKRkV3SkVJSEl2SURKR0lMSXlJeElESXZFd0lHSURKR0lESUVJREpGSUhKRkV3SkZJRklESXZJSEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZKRkdGRUZJRklJRkZFRXdGR0ZHRkpGSEV3RkdGTElHRkpFd0lERkxJRUZMRXdJSUZLSUVJSElESURJSUZJRkxGR0ZKRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

LinkedIn’s journey of scaling HDFS to 1 Exabyte

LinkedIn is the world’s largest professional social networking site with 800 million

users from over 200 countries.

In order to run analytics workloads on all the data generated by these users, LinkedIn

relies on Hadoop.

More specifically, they store all this data on the Hadoop Distributed File System

(HDFS).

HDFS was based on Google File System (GFS), and you can read our article on GFS

here.

Over the last 5 years, LinkedIn’s analytics infrastructure has grown exponentially,

doubling every year in data size and compute workloads.

In 2021, they reached a milestone by storing 1 exabyte of data (1 million terabytes)

across all their Hadoop clusters.

The largest Hadoop cluster stores 500 petabytes of data and needs over 10,000 nodes in

the cluster. This makes it one of the largest (if not the largest) Hadoop cluster in the

industry.

Despite the massive scale, the average latency for RPCs (remote procedure calls) to the

cluster is under 10 milliseconds.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpESkhJREpGSkdJeUpFRXhJeUpFSUpFeUpDRXlJSkl5SXlJSkl2SUhFd0lJSUxJdklIRXdKRkpMSkZKR0lISXdFd0lISktKQ0l2SURJTEl4SUhJR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRkZLSUZJR0lHSURGSkV3SUhGTEZJRkVFd0ZHRkpGR0ZKRXdJRElHRkRGR0V3RkhGTElISURGRklGRkZJSUZDRkhGQ0ZJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

In 2015, the largest Hadoop cluster stored just over 20 petabytes of data.

It took just 5 years for that cluster to grow to over 200 petabytes of data.

In the article, LinkedIn engineers talk about some of the steps they took to ensure that

HDFS could scale to 500 terabytes.

Replicating NameNodes

With HDFS, the file system metadata is decoupled from the data.

An HDFS cluster consists of two types of servers: a NameNode server and a bunch of

DataNode servers.

The DataNodes are responsible for storing the actual data in HDFS. When clients are

reading/writing data to the distributed file system, they are communicating directly

with the DataNodes.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The NameNode server keeps track of all the file system metadata like the directory tree,

file-block mappings (Hadoop breaks up files into 128 megabyte units called data

blocks), which block is stored on which DataNodes, etc.

The NameNode also helps coordinate all the action in HDFS.

A client will first ask NameNode for the location of a certain file. NameNode will

respond with the DataNode that contains that file and the client can then read/write

their data directly to that DataNode server.

If your NameNode server goes down, then that’s no bueno. Your entire Hadoop cluster

will be down as the NameNode is a single point of failure.

Also, when you’re operating at the scale of hundreds of petabytes in your cluster,

restarting NameNode can takemore than an hour. During this time, all jobs on the

cluster must be suspended.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

This is a big problem if you have a 500 petabyte cluster.

When you have clusters that large, it becomes extremely expensive to have downtime

since a massive amount of processes at the organization rely on that cluster (that cluster

accounts for half of all the data at LinkedIn).

Additionally, upgrading the cluster also becomes an issue since you have to restart the

NameNode. This results in hours of additional downtime.

Fortunately, Hadoop 2 introduced a High Availability feature to solve this issue. With

this feature, you can have multiple replicated NameNode servers.

The way it works is that you have a single Active NameNode that receives all the client’s

requests.

The Active NameNode will publish its transactions into a Journal Service (LinkedIn uses

Quorum Journal Manager for this) and the Standby NameNode servers will consume

those transactions and update their namespace state accordingly.

This keeps them up-to-date so they can take over in case the Active NameNode server

fails.

LinkedIn uses IP failover to make failovers seamless. Clients communicate to the Active

NameNode server using the same Virtual IP address irrespective of which physical

NameNode server is assigned as the Active NameNode. A transition between NameNode

servers will happen transparently to the clients.

Now, performing rolling updates is also much easier.

First, one of the Standby NameNodes is upgraded with the new software and restarted.

Then, the Active NameNode fails over to the upgraded standby and is subsequently

upgraded and restarted.

After, the DataNodes can also be restarted with the new software. The DataNode

restarts are done in batches, so that at least one replica of a piece of data remains online

at all times.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJS0lESUdJeUl5SkNFeElESkNJRElGSUtJSEV4SXlKRUlKRXlJR0l5SUZKRkV5SUZKSEpFSkVJSEl4SkdFeUlLSURJR0l5SXlKQ0V3SkNKRUl5SXRJSElGSkdFd0lHSUxKRkpHRXlJS0lESUdJeUl5SkNFd0lLSUdJSUpGRXlHS0dHR0lIRkdLSUxJSklLR0RKSUlESUxJdklESUVJTEl2SUxKR0pMSEpJTEpHSUtIREd0R3dFeElLSkdJd0l2RUZHREpFSUZJS0lMSkdJSElGSkdKSEpFSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZGS0lGSUdJR0lERkpFd0lIRkxGSUZFRXdGR0ZKRkdGSkV3SURJR0ZERkdFd0ZIRkxJSElERkZJRkZGSUlGQ0ZIRkNGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJS0lESUdJeUl5SkNFeElESkNJRElGSUtJSEV4SXlKRUlKRXlJR0l5SUZKRkV5SUZKSEpFSkVJSEl4SkdFeUlLSURJR0l5SXlKQ0V3SkNKRUl5SXRJSElGSkdFd0lHSUxKRkpHRXlJS0lESUdJeUl5SkNFd0lLSUdJSUpGRXlHS0dHR0lIRkdLSUxJSklLR0RKSUlESUxJdklESUVJTEl2SUxKR0pMSEpJTEpHSUtIREd0R3dFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUlGRktJRklHSUdJREZKRXdJSEZMRklGRUV3RkdGSkZHRkpFd0lESUdGREZHRXdGSEZMSUhJREZGSUZGRklJRkNGSEZDRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Java Tuning

Previously, we talked about how the NameNode server will keep track of all the file

system metadata.

The NameNode server keeps all of this file system metadata in RAM for low latency

access.

As the filesystem grows, the namespace will also grow proportionally.

This adds the requirement for periodic increases of the Java heap size on the NameNode

server (Hadoop is written in Java).

LinkedIn’s largest NameNode server is set to use a 380 gigabyte heap to maintain the

namespace for 1.1 billion objects.

Maintaining such a large heap requires elaborate tuning in order to provide high

performance.

The Java heap is generally divided into two spaces: Young generation and Tenured (Old)

generation.

An object will first start in the young generation, and as it survives garbage collection

events, it will get promoted to eventually end up in the old generation.

As the workload on the NameNode increases, it generates more temporary objects in the

young generation space.

The growth of the namespace increases the old generation.

LinkedIn engineers try to keep the storage ratio between the young and old generations

at around 1:4.

By keeping the young and Old spaces appropriately sized, LinkedIn can completely

avoid full garbage collection events (where both the Young and Old generations are

collected), which would result in a many-minutes-long outage in the NameNode.

Non-Fair Locking

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

NameNode is a highly multithreaded application and it uses a global read-write lock to

control concurrency.

The write lock is exclusive (only one thread can hold it and write) while the read lock is

shared, allowing multiple reader threads to run while holding it.

Locks in java support two modes

● Fair - Locks are acquired in FIFO order

● Non-fair - Locks can be acquired out of order

With fair locking, the NameNode server frequently ends up in situations where writer

threads block reader threads (where the readers could be running in parallel).

Non-fair mode, on the other hand, allows reader threads to go ahead of the writers.

This results in a substantial improvement in overall NameNode performance, especially

since the workload is substantially skewed towards read requests.

Other Optimizations

Satellite Clusters

HDFS is optimized for maintaining large files and providing high throughput for

sequential reads and writes.

As stated before, HDFS splits up files into blocks and then stores the blocks on the

various DataNode servers.

Each block is set to a default size of 128 megabytes (LinkedIn has configured their

cluster to 512 megabytes).

If lots of small files (the file size is less than the block size) are stored on the HDFS

cluster, this can create issues by disproportionately inflating the metadata size

compared to the aggregate size of the data.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Since all metadata is stored in the NameNode server’s RAM, this becomes a scalability

limit and a performance bottleneck.

In order to ease these limits, LinkedIn created Satellite HDFS Clusters that handled

storing these smaller files.

You can read the details on how they split off the data from the main cluster to the

satellite clusters in the article.

Consistent Reads from Standby NameNodes

The main limiting factor for HDFS scalability eventually becomes the performance of

the NameNode server.

However, LinkedIn is using the High Availability feature, so they have multiple

NameNode servers (one in Active mode and the others in Standby state).

This creates an opportunity for reading metadata from Standby NameNodes instead of

the Active NameNode.

Then, the Active NameNode can just be responsible for serving write requests for

namespace updates.

In order to implement this, LinkedIn details the consistency model they used to ensure

highly-consistent reads from the Standby NameNodes.

Read the full details in the article.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SkdJS0lIRXdJSEpLSURJRUpMSkdJSEV3SUZJdkpISUVFd0V3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0l0SXlKSEpFSXhJSEpMRXdJeUlJRXdKRklGSURJdklMSXhJSkV3SkdJS0lIRXdJS0lESUdJeUl5SkNFd0lHSUxKRkpHSkVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZGS0lGSUdJR0lERkpFd0lIRkxGSUZFRXdGR0ZKRkdGSkV3SURJR0ZERkdFd0ZIRkxJSElERkZJRkZGSUlGQ0ZIRkNGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SkdJS0lIRXdJSEpLSURJRUpMSkdJSEV3SUZJdkpISUVFd0V3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0l0SXlKSEpFSXhJSEpMRXdJeUlJRXdKRklGSURJdklMSXhJSkV3SkdJS0lIRXdJS0lESUdJeUl5SkNFd0lHSUxKRkpHSkVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZGS0lGSUdJR0lERkpFd0lIRkxGSUZFRXdGR0ZKRkdGSkV3SURJR0ZERkdFd0ZIRkxJSElERkZJRkZGSUlGQ0ZIRkNGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Building a Static Analysis tool at Slack

Nicholas Lin and David Frankel were two interns on Slack’s Product Security team, and

they worked on building a static code analysis tool for Slack’s codebase.

In case you’re unaware, Slack is a chat tool catering towards businesses.

Here’s a summary

Static Code Analysis tools inspect your source code (without executing it) and identify

potential errors and security vulnerabilities.

Giving engineers static analysis tools can immensely help developer productivity and

make the codebase much more secure.

Slack’s codebase is largely written in the Hack programming language.

Hack was developed at Facebook and is a typed dialect of PHP (Hack allows both

dynamic and static typing, so it’s type system is classified as gradually typed).

There were no static analysis tools available for Hack, so Nicholas and David set out to

build one.

Building a static analysis tool from scratch would be too complex, so they decided to

extend an existing open source static analysis tool, Semgrep.

Semgrep was already in use at Slack to scan code in 6 different languages, and there’s

already infrastructure in place to integrate Semgrep into the CI/CD pipeline.

In order to add Hack functionality to Semgrep, they needed to answer two questions

1. What are the grammar rules for the Hack language?

2. How can Semgrep understand these grammar rules?

Developing a grammar for Hack

Programming languages have a structure to them that is known as the grammar.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJRElHSkhJREl2SHlKR0pMSkNJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkVGS0ZISUdJSElERkRFd0ZDRkRGSkZIRXdGR0ZGRkpGRUV3SURGSUlGRklFd0ZKRkNGREZHSUhJSUZLSUlJSUlIRkpGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRklISXdJSkpFSUhKQ0V4SUdJSEpJRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkVGS0ZISUdJSElERkRFd0ZDRkRGSkZIRXdGR0ZGRkpGRUV3SURGSUlGRklFd0ZKRkNGREZHSUhJSUZLSUlJSUlIRkpGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTElFSXlJeUl1SkZFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSXhKR0pFSXlJR0pISUZKR0lMSXlJeEh5SkdJeUh5SENKRUl5SUpKRUlESXdJd0lMSXhJSkh5R3ZJREl4SUpKSElESUpJSEpGRXlHSkpFSURJd0l3SURKRUpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZFRktGSElHSUhJREZERXdGQ0ZERkpGSEV3RkdGRkZKRkVFd0lERklJRkZJRXdGSkZDRkRGR0lISUlGS0lJSUlJSEZKRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The main notation used to represent grammars is the Backus-Naur Form (BNF).

Here’s an example of a very simple grammar that can recognize arithmetic expressions.

A programming language’s grammar will let you transform the program from a series of

ASCII characters (words, spaces, etc.) into a concrete syntax tree (also known as a parse

tree).

The concrete syntax tree (CST) is an exact visual representation of the parsed source

code based on the grammar.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSURKRUpGSUhIeUpHSkVJSElIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZFRktGSElHSUhJREZERXdGQ0ZERkpGSEV3RkdGRkZKRkVFd0lERklJRkZJRXdGSkZDRkRGR0lISUlGS0lJSUlJSEZKRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSURKRUpGSUhIeUpHSkVJSElIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZFRktGSElHSUhJREZERXdGQ0ZERkpGSEV3RkdGRkZKRkVFd0lERklJRkZJRXdGSkZDRkRGR0lISUlGS0lJSUlJSEZKRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

So, Nicholas and David incrementally wrote the grammar rules for the Hack

programming language.

They tested their grammar by using a library called Tree-sitter.

Tree-sitter can take your grammar rules and then generate a language parser from

them.

Nicholas and David used Tree-sitter to create a Hack parser using their grammar.

Then, they tested that parser by using it to convert some of Slack’s source code into a

CST.

From this conversion, they can measure the parse rate, which is the proportion of the

source code that could be properly parsed to construct a CST.

The higher the parse rate, the more code your parser was able to understand to

construct the CST.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Since the parser is based on the grammar rules, having a very high parse rate means that

your grammar is very expressive and covers the programming language well.

Nicholas and Dave were eventually able to develop a grammar that achieved a parse rate

of greater than 99.999%.

Of the 5 million lines of Hack code they tested, there were less than 15 lines of

unparsable code.

The Hack grammar they developed is open source. You can view it here.

Teaching Semgrep the Grammar

Semgrep (the static analysis tool) uses an abstract syntax tree to understand the source

code and find bugs/vulnerabilities.

While the CST is an exact representation of your code, the abstract syntax tree (AST)

focuses on the essential information.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SkZJdklESUZJdUlLSkRFeUpHSkVJSElIRXdKRklMSkdKR0lISkVFd0lLSURJRkl1RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZFRktGSElHSUhJREZERXdGQ0ZERkpGSEV3RkdGRkZKRkVFd0lERklJRkZJRXdGSkZDRkRGR0lISUlGS0lJSUlJSEZKRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

An AST focuses on the structure of your code, and represents it in a hierarchical data

structure useful for analysis.

You can read about the differences between an AST and a CST here.

Semgrep converts your source code (in Go, Java, JavaScript, Python, Ruby, etc.) into a

language-agnostic AST.

Then, it looks through a list of rules that check the Semgrep AST for bugs and

vulnerabilities.

This makes Semgrep highly extensible, as it’s loosely coupled with the programming

language.

In order to map the tree-sitter CST to the Semgrep AST, Nicholas and David wrote a

custom parser file in OCaml (Semgrep-core is written in the OCaml programming

language).

Then, they plugged this file into Semgrep and used the static analysis capabilities with

Hack code.

For more details, read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl2SUxFeEpHSUtJSElKSkVJSElISXhKQ0l2SURJRklIRXhJeElISkdFeUZFRkNGQ0ZMRXlGQ0ZFRXlGREZJRXlJRElFSkZKR0pFSURJRkpHRXdKSUpGRXdJRkl5SXhJRkpFSUhKR0lIRXdKRkpMSXhKR0lESktFd0pHSkVJSElISkZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkVGS0ZISUdJSElERkRFd0ZDRkRGSkZIRXdGR0ZGRkpGRUV3SURGSUlGRklFd0ZKRkNGREZHSUhJSUZLSUlJSUlIRkpGSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkl2SURJRkl1RXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJS0l5SkpFd0pHSkpJeUV3SUxJeEpHSUhKRUl4SkZFd0lESkVJSEV3SUtJSEl2SkNJTEl4SUpFd0pGSUhJRkpISkVJSEV3SXdJTEl2SXZJTEl5SXhKRkV3SXlJSUV3SXZJTEl4SUhKRkV3SXlJSUV3SUZJeUlHSUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGRUZLRkhJR0lISURGREV3RkNGREZKRkhFd0ZHRkZGSkZFRXdJREZJSUZGSUV3RkpGQ0ZERkdJSElJRktJSUlJSUhGSkZJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

How Facebook Encodes Videos

Hundreds of millions of videos are uploaded to Facebook every day.

In order to deliver these videos with high quality and little buffering, Facebook uses a

variety of video codecs to compress and decompress videos. They also use Adaptive

Bitrate Streaming (ABR).

We’ll first give a bit of background information on what ABR and video codecs are.

Then, we’ll talk about the process at Facebook.

Progressive Streaming vs. Adaptive Bitrate Streaming

Progressive Streaming is where a single video file is being streamed over the internet to

the client.

The video will automatically expand or contract to fit the screen you are playing it on,

but regardless of the device, the video file size will always be the same.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

There are numerous issues with progressive streaming.

● Quality Issue - Your users will have different screen sizes, so the video will be

stretched/pixelated if their screen resolution is different from the video’s

resolution.

● Buffering - Users who have a poor internet connection will be downloading

the same file as users who have a fast internet connection, so they

(slow-download users) will experience much more buffering.

Adaptive Bitrate Streaming is where the video provider creates different videos for each

of the screen sizes that he wants to target.

He can encode the video into multiple resolutions (480p, 720p, 1080p) so that users

with slow internet connections can stream a smaller video file than users with fast

internet connections.

The player client can detect the user’s bandwidth and CPU capacity in real time and

switch between streaming the different encodings depending on available resources.

You can read more about Adaptive Bitrate Streaming here.

Video Codec

A video codec compresses and decompresses digital video files.

Transmitting uncompressed video data over a network is impractical due to the size

(tens to hundreds of gigabytes).

Video codecs solve this problem by compressing video data and encoding it in a format

that can later be decoded and played back.

Examples of common codecs include H264 (AVC), MPEG-1, VP9, etc.

The various codecs have different trade-offs between compression efficiency, visual

quality, and how much computing power is needed.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESUdJREpDSkdJTEpJSUhIeUlFSUxKR0pFSURKR0lISHlKRkpHSkVJSElESXdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDSUlGSElHRkRGTElFSURFd0lJRkZGRklGRXdGR0ZLSUhJR0V3SURGSUlFSUlFd0lHRkxGSUZLRkRGRElGSUhJSUZJRkRGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

More advanced codecs like VP9 provide better compression performance over older

codecs like H264, but they also consume more computing power.

You can read more about video codecs here.

Facebook’s Process for Encoding Videos

So, you upload a video of your dog to Facebook. What happens next?

Once the video is uploaded, the first step is to encode the video into multiple resolutions

(360p, 480p, 720p, 1080p, etc.)

Next, Facebook’s video encoding system will try to further improve the viewing

experience by using advanced codecs such as H264 and VP9.

The encoding job requests are each assigned a priority value, and then put into a priority

queue.

A specialized encoding compute pool then handles the job.

Now, the Facebook web app (or mobile app) and Facebook backend can coordinate to

stream the highest-quality video file with the least buffering to people who watch your

video.

A key question Facebook has to deal with here revolves around how they should assign

priority values to jobs?

The goal is to maximize everyone’s video experience by quickly applying more

compute-intensive codecs to the videos that are watched the most.

Let’s say Cristiano Ronaldo uploaded a video of his dog at the same time that you

uploaded your video.

There’s probably going to be a lot more viewers for Ronaldo’s video compared to yours

so Facebook will want to prioritize encoding for Ronaldo’s video (and give those users a

better experience).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVFeEl3SXlKdElMSXZJdklERXhJeUpFSUpFeUlISXhFd0hISEZFeUlHSXlJRkpGRXlISklISUVFeUd3SUhJR0lMSURFeUdJSXlKRUl3SURKR0pGRXlISUlMSUdJSEl5SHlJRkl5SUdJSElGSkZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDSUlGSElHRkRGTElFSURFd0lJRkZGRklGRXdGR0ZLSUhJR0V3SURGSUlFSUlFd0lHRkxGSUZLRkRGRElGSUhJSUZJRkRGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

They’ll also want to use more computationally-expensive codecs (that result in better

compression ratios and quality) for Ronaldo.

The Benefit-Cost Model

Facebook’s solution for assigning priorities is the Benefit-Cost model.

It relies on two metrics: Benefit and Cost.

The encoding job’s priority is then calculated by taking Benefit and dividing it by Cost.

Benefit

The benefit metric attempts to quantify how much benefit Facebook users will get from

advanced encodings.

It’s calculated by multiplying relative compression efficiency * effective predicted watch

time.

The effective predicted watch time is an estimate of the total watch time that a video will

be watched in the near future across all of its audience.

Facebook uses a sophisticated ML model to predict the watch time. They talk about how

they created the model (and the parameters involved) in the article.

The relative compression efficiency is a measure of how much a user benefits from the

codec’s efficiency.

It’s based on a metric called the Minutes of Video at High Quality per GB (MVHQ)

which is a measure of how many minutes of high-quality video can you stream per

gigabyte of data.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Facebook compares the MVHQ of different encodings to find the relative compression

efficiency.

Cost

This is a measure of the amount of logical computing cycles needed to make the

encoding family (consisting of all the different resolutions) deliverable.

Some jobs may require more resolutions than others before they’re considered

deliverable.

As stated before, Facebook divides Benefit / Cost to get the priority for a video encoding

job.

After encoding, Facebook’s backend will store all the various video files and

communicate with the frontend to stream the optimal video file for each user.

For more details, read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSUlFRXhJRkl5SXdFeUZFRkNGRUZERXlGQ0ZHRXlGQ0ZIRXlKSUlMSUdJSEl5RXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJS0l5SkpFd0lJSURJRklISUVJeUl5SXVFd0lISXhJRkl5SUdJSEpGRXdKTEl5SkhKRUV3SklJTElHSUhJeUpGRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDSUlGSElHRkRGTElFSURFd0lJRkZGRklGRXdGR0ZLSUhJR0V3SURGSUlFSUlFd0lHRkxGSUZLRkRGRElGSUhJSUZJRkRGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

How Uber Migrated their Financial Transaction

Database from DynamoDB to Docstore

In order to keep track of their financial transaction data, Uber built an immutable

ledger-style database called LedgerStore.

LedgerStore’s storage backend was AWS DynamoDB but Uber decided to migrate away

because it was becoming expensive.

They switched the storage backend to Docstore, a general-purpose, multimodal database

that was developed internally at Uber.

The project resulted in

● $6 million of yearly savings for Uber

● Fewer external dependencies

● Technology Consolidation (since Docstore is an Uber product, many other

services inside Uber also use it)

● Latency improvements

Uber was able to do this without a single production incident and not a single data

inconsistency in the 250 billion unique records that were migrated from DynamoDB to

Docstore.

Piyush Patel, Jaydeepkumar Chovatia and Kaushik Devarajaiah wrote a great article on

the migration, and we’ll be giving a summary below.

Here’s a summary

Uber moves millions of people around the world and delivers tens of millions of food

orders daily. This generates a massive amount of financial transactions that need to be

stored.

To do this, Uber uses LedgerStore, an append-only, ledger-style distributed database.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUpGSUZJS0lISXdJREl2SUhKRkpGRXdKRkpESXZFd0lHSURKR0lESUVJREpGSUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZJREZESUZJRkZFRkVGR0V3SUZGRUZDRkRFd0ZHRkxJSUZKRXdGTEZLRktGQ0V3RkZGQ0ZIRkxGSEZHRkpJR0ZKRkdGTEZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SkhJdkpHSUxFd0l3SXlJR0lISXZIeUlHSURKR0lESUVJREpGSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSURGRElGSUZGRUZFRkdFd0lGRkVGQ0ZERXdGR0ZMSUlGSkV3RkxGS0ZLRkNFd0ZGRkNGSEZMRkhGR0ZKSUdGSkZHRkxGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUlHSkxJeElESXdJeUlHSUVFd0pHSXlFd0lHSXlJRkpGSkdJeUpFSUhFd0l3SUxJSkpFSURKR0lMSXlJeEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklERkRJRklGRkVGRUZHRXdJRkZFRkNGREV3RkdGTElJRkpFd0ZMRktGS0ZDRXdGRkZDRkhGTEZIRkdGSklHRkpGR0ZMRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

A datastore in LedgerStore is a collection of tables and each table contains a set of

records modeled as documents.

Here’s an example of a LedgerStore table schema

Tables can have one or many indexes and an index belongs to exactly one table.

Indexes in LedgerStore are strongly consistent, so when a write to the main table

succeeds, all indexes are updated at the same time using a 2-phase commit.

LedgerStore also provides automatic data-tiering functionality.

The data is mostly read within a few weeks or months after being written. Because it’s

expensive to store data in hot databases like DynamoDB, Uber offloads the data to

colder storage after a time period.

LedgerStore was designed to provide the following data integrity guarantees.

1. Individual records are immutable

2. Corrections are trackable

3. Unauthorized data changes and inconsistencies must be detected

4. Queries are reproducible a bounded time after write

In order to provide these guarantees, Ledger Store created the concept of Sealing.

Sealing

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhHSkpJeUV3SkNJS0lESkZJSEh5SUZJeUl3SXdJTEpHSHlKQ0pFSXlKR0l5SUZJeUl2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklERkRJRklGRkVGRUZHRXdJRkZFRkNGREV3RkdGTElJRkpFd0ZMRktGS0ZDRXdGRkZDRkhGTEZIRkdGSklHRkpGR0ZMRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Sealing is the process of closing a past time range of data for changes and maintaining

signatures of the data within that sealed time range.

After a sealing window is closed, signed and sealed, no further updates to it will be

permitted.

If you need to correct data in an already-sealed time range, LedgerStore uses Revisions,

which we’ll discuss below.

Because there are no updates, any query that only reads data from a sealed time range is

guaranteed to be reproducible.

Revisions

If you need to correct data in already-sealed time ranges, LedgerStore uses the notion of

Revisions.

A revision is a table-level entity consisting of all sealed record corrections and the

associated business justifications. All records, both corrected and the original, are

maintained to allow reproducible queries.

Choosing Docstore

LedgerStore was designed to abstract away the underlying storage technology so that

switching technologies could be done if the business need arose.

As the database scaled, using AWS DynamoDB as a storage backend became extremely

expensive.

Additionally, having different backend databases in the tech stack created fragmentation

and made it difficult to operate.

The requirements for the storage backend were

● High availability - 99.99% availability guarantees

● Can be easily scaled horizontally

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

● Change Data Capture (a.k.a streaming)

● Secondary Indexes

● A flexible data model

Docstore, Uber’s homegrown database, was a perfect match for those requirements.

The only issue was that Docstore didn’t have Change Data Capture (streaming)

functionality.

Uber wanted streaming functionality because reading data from a stream of updates is

more efficient than reading from the table directly.

You don’t have to perform table scans or range reads spawning a large number of rows.

Also, the stream data can be stored in cheaper, commodity hardware.

The stream data can be stored in a system like Apache Kafka, which is optimized for

stream reading.

Uber solved this issue by building a streaming framework for Docstore called Flux. Read

the article for more details on Flux.

DynamoDB to Docstore Migration

When migrating from DynamoDB to Docstore, Uber had several objectives they wanted

● Zero stakeholder involvement - clients who rely on LedgerStore should not be

involved or exposed to the migration. They shouldn’t have to change any code.

● High Availability - no downtime during migration

● Maintaining 100% Read-Your-Writes data consistency

● Maintaining pre-existing performance SLOs, such as latency

● Ability to switch back, in case of emergency

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSUtJREl4SUpJSEh5SUdJREpHSURIeUlGSURKQ0pHSkhKRUlIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklERkRJRklGRkVGRUZHRXdJRkZFRkNGREV3RkdGTElJRkpFd0ZMRktGS0ZDRXdGRkZDRkhGTEZIRkdGSklHRkpGR0ZMRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUpGSUZJS0lISXdJREl2SUhKRkpGRXdKRkpESXZFd0lHSURKR0lESUVJREpGSUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZJREZESUZJRkZFRkVGR0V3SUZGRUZDRkRFd0ZHRkxJSUZKRXdGTEZLRktGQ0V3RkZGQ0ZIRkxGSEZHRkpJR0ZKRkdGTEZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Historical Data Migration

One part of the migration was moving all the historical data from DynamoDB to

Docstore in real time.

The data consisted of more than 250 billion unique records and was 300 terabytes of

data in total.

Engineers did this by breaking the historical data down into subsets and then processing

them individually via checkpointing.

LedgerStore already supported cold storage offloading (part of automatic data-tiering

discussed earlier) and the offloading worked at a sealing window granularity.

Therefore, the data is already broken down into subsets, where each subset is an

individual sealing window.

Engineers built a backfill framework to process individual sealing windows and

maintain a checkpoint of them.

The framework is multi-threaded, spawning multiple workers where each worker is

processing a distinct sealing window.

As a result, the framework is capable of processing 1 million messages per second.

Backfilling all the historical data was able to be done in a couple of weeks.

Online Traffic Redirection

The second part of the migration is online traffic redirection.

To do this, engineers configured LedgerStore to talk to 2 different databases

(DynamoDB and Docstore), with each database assuming a primary or secondary role

depending on the phase of the migration.

The goal was to keep the 2 databases consistent at any phase of the migration so that

rollback and forward were possible.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The online traffic redirection was divided into 4 phases

1. ShadowWrites - engineers added a shadow writer module in LedgerStore’s

write path to insert incoming data into the secondary database along with the

primary.The secondary database writes happened asynchronously, to keep

write latency low.A two-phase commit protocol was used to track the

asynchronous writes.

2. Dual Read and Merge - To guarantee 100% consistency and 99.99%

availability, a new module called Dual Read and Merge was added in the read

path for LedgerStore.This module served read requests by reading from both

databases, merging the results, and then returning them to the client.

3. Swap Databases - In this phase, engineers compared both the Docstore

database with the DynamoDB database to ensure it matched.They were able

to validate 250 billion unique records through a Spark job within a single

week.After validation, they swapped the databases and promoted Docstore as

the primary and DynamoDB as the secondary.After Docstore is promoted to

primary, they slowly stopped traffic to DynamoDB.First, they gradually

removed reads from DynamoDB and served them out of Docstore.

4. Final Cutover - Once reads were fully served out of Docstore, it was time to

stop the shadow writes to DynamoDB. Afterwards, engineers backed up the

DynamoDB database and finally decommissioned it.

Read the full article for more details

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhHSkpJeUV3SkNJS0lESkZJSEh5SUZJeUl3SXdJTEpHSHlKQ0pFSXlKR0l5SUZJeUl2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklERkRJRklGRkVGRUZHRXdJRkZFRkNGREV3RkdGTElJRkpFd0ZMRktGS0ZDRXdGRkZDRkhGTEZIRkdGSklHRkpGR0ZMRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEpISUVJSEpFRXhJRkl5SXdFeUlHSkxJeElESXdJeUlHSUVFd0pHSXlFd0lHSXlJRkpGSkdJeUpFSUhFd0l3SUxJSkpFSURKR0lMSXlJeEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklERkRJRklGRkVGRUZHRXdJRkZFRkNGREV3RkdGTElJRkpFd0ZMRktGS0ZDRXdGRkZDRkhGTEZIRkdGSklHRkpGR0ZMRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

An Introduction to Big Data Architectures

Microsoft has a great introduction to Big Data Architectures in their Azure docs.

Here’s a summary.

When you’re dealing with massive amounts of data (hundreds of terabytes or petabytes),

then the traditional ways of dealing with data start to break down.

You’ll need to use a distributed system, and you’ll have to orchestrate the different

components to suit your workload.

Typically, big data solutions involve one or more of the following types of workloads.

● Batch processing of data in storage

● Real-time processing of data from a stream

● Interactive exploration of data

● Predictive analytics and machine learning

Components of a Big Data Architecture

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SUZKRkV4SXdJTElGSkVJeUpGSXlJSUpHRXhJRkl5SXdFeUlISXhFd0pISkZFeUlESnRKSEpFSUhFeUlESkVJRklLSUxKR0lISUZKR0pISkVJSEV5SUdJREpHSURFd0lKSkhJTElHSUhFeUlFSUxJSkV3SUdJREpHSURFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Most big data architectures include some or all of the following components

● Data Sources - It’s pretty dumb to build a distributed system for managing

data if you don’t have any data. So, all architectures will have at least one

source that’s creating data. This can be a web application, an IoT device, etc.

● Data Storage - Data for batch processing operations is typically stored in a

distributed file store that can hold high volumes of large files in various

formats. This kind of store is often called a data lake.

● Batch Processing - Because the data sets are so large, often a big data solution

must process data files using long-running batch jobs to filter, aggregate, and

prepare the data for analysis. Map Reduce is a very popular way of running

these batch jobs on distributed data.

● Real-time Message Ingestion - If the solution includes real-time sources, the

architecture must include a way to capture and store real-time messages for

stream processing. This portion of a streaming architecture is often referred

to as stream buffering.

● Stream Processing - After capturing real-time messages, the solution must

process them by filtering, aggregating, and otherwise preparing the data for

analysis. Apache Storm is a popular open source technology that can handle

this for you.

● Analytical Data Store - Many big data solutions prepare data for analysis and

then serve the processed data in a structured format that can be queried using

analytical tools. This can be done with a relational data warehouse

(commonly used for BI solutions) or through NoSQL technology like HBase

or Hive.

● Orchestration - Big data solutions consist of repeated data processing

operations that transform source data, move data between multiple sources

and sinks, load the processed data into an analytical data store, or push the

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESHlJdklESXVJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SURKQ0hFSUhJR0pISUZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5SEZKR0l5SkVJd0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESHlKSklESkVJSElLSXlKSEpGSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGRkxJRkZMSURGSUlERktFd0ZKSURJREZMRXdGR0ZERktGSkV3RktGQ0ZJRkhFd0ZFRkxJREZISUlJSUZHRkVJRUlIRkpJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0tHRUlESkZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0tJTEpJSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGRkxJRkZMSURGSUlERktFd0ZKSURJREZMRXdGR0ZERktGSkV3RktGQ0ZJRkhFd0ZFRkxJREZISUlJSUZHRkVJRUlIRkpJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

results straight to a report or dashboard. You can use something like Apache

Oozie to orchestrate these jobs.

When you’re working with a large data set, analytical queries will often require batch

processing. You’ll have to use something like MapReduce.

This means that getting an answer to your query can take hours, as you have to wait for

the batch job to finish.

The issue is that this means you won’t get real time results to your queries. You’ll always

get an answer that is a few hours old.

This is a problem that comes up frequently with big data architectures.

The ideal scenario is where you can get some results in real time (perhaps with some

loss of accuracy) and combine these results with the results from the batch job.

The Lambda Architecture is a solution to this issue.

Lambda Architecture

The Lambda Architecture solves this by creating two paths for data flow: the cold path

and the hot path.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R3lJeUp0SUxJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R3lJeUp0SUxJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZGTElGRkxJREZJSURGS0V3RkpJRElERkxFd0ZHRkRGS0ZKRXdGS0ZDRklGSEV3RkVGTElERkhJSUlJRkdGRUlFSUhGSklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The cold path is also known as the batch layer. It stores all of the historical data in raw

form and performs batch processing on the data.

The raw data in the batch layer is immutable. The incoming data is always appended to

the existing data, and the previous data is never overwritten.

The cold path has a high latency when answering analytical queries. This is because the

batch layer aims at perfect accuracy by processing all available data when generating

views.

The hot path is also known as the speed layer, and it analyzes the incoming data in real

time. The speed layer’s views may not be as accurate or complete as the batch layer, but

they’re available almost immediately after the data is received.

The speed layer is responsible for filling the gap caused by the batch layer’s lag and

provides views for the most recent data.

The hot and cold paths converge at the serving layer. The serving layer indexes the batch

view for efficient querying and incorporates incremental updates from the speed layer

based on the most recent data.

With this solution, you can run analytical queries on your datasets and get up-to-date

answers.

A drawback to the lambda architecture is the complexity. Processing logic appears in

two different places (the hot and cold paths) and they use different frameworks.

The Kappa Architecture is meant to be a solution to this, where all your data flows

through a single path, using a stream processing engine.

You can read more about the Kappa Architecture here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJS0lESnRJSEl2SUZJREpGSkdFeElGSXlJd0V5SUpJdkl5SkZKRklESkVKTEV5SXVJREpDSkNJREV3SURKRUlGSUtJTEpHSUhJRkpHSkhKRUlIRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGRkxJRkZMSURGSUlERktFd0ZKSURJREZMRXdGR0ZERktGSkV3RktGQ0ZJRkhFd0ZFRkxJREZISUlJSUZHRkVJRUlIRkpJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

How Stripe uses Similarity Clustering to catch

Fraud Rings

Stripe is one of the world’s largest payment processors.

The company’s main product is the Stripe Payments API, which developers can use to

easily embed payment functionality into their applications.

Due to Stripe’s scale, they’re a big target for payments fraud and cybercrime.

Andrew Tausz is part of the Risk Intelligence team at Stripe, and he wrote a great blog

post on how Stripe uses similarity clustering to catch fraud rings.

Merchant Fraud at Stripe

One of the most common types of fraud that Stripe faces is merchant fraud, where a

scammer will create a website that advertises fraudulent products or services (and uses

Stripe to process payments).

An example might be if a scammer creates a website that sells electronic goods at a

highly discounted price. After a customer pays him for the good, he pockets the money

and doesn’t send the customer the promised good.

The customer will end up issuing a chargeback through their credit card, which will

eventually get paid back by Stripe.

Stripe will then attempt to debit the account of the scammer, but if they’re unable to (the

scammer transferred out all his money) then Stripe will have to eat the losses.

After a fraudster gets caught by Stripe, his account will be disabled. But, it’s quite likely

that he’ll try to continue the scam by creating a new Stripe account.

One way Stripe can reduce fraud is by catching these repeat fraudsters through

similarity clustering.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSkVJTEpDSUhFeElGSXlJd0V5SUVJdkl5SUpFeUpGSUxJd0lMSXZJREpFSUxKR0pMRXdJRkl2SkhKRkpHSUhKRUlMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGTEZDRkxGSElISUVJRkV3SUhJSEZGRkxFd0ZHRkxGSUZDRXdGS0ZHSUdGQ0V3RkxGQ0ZJSUlGR0ZJRklJSEZESUVGSElERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSkVJTEpDSUhFeElGSXlJd0V5SUVJdkl5SUpFeUpGSUxJd0lMSXZJREpFSUxKR0pMRXdJRkl2SkhKRkpHSUhKRUlMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGTEZDRkxGSElISUVJRkV3SUhJSEZGRkxFd0ZHRkxGSUZDRXdGS0ZHSUdGQ0V3RkxGQ0ZJSUlGR0ZJRklJSEZESUVGSElERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Using Similarity Clustering to Reduce Merchant Fraud

When a scammer creates a new Stripe account (after getting caught on his previous

account), he’ll probably reuse some information and attributes from his previous

account.

Certain information is easy to fabricate, like your name or date of birth. But, other

attributes are more difficult. For example, it takes significant effort to obtain a new bank

account.

Therefore, Stripe has found that linking accounts together via shared attributes is quite

effective at catching obvious fraud attempts.

Switching from Heuristics-based to an ML model

In order to link accounts together, Stripe relies on a similarity score.

They take two accounts and then assign them a similarity score based on the number of

shared attributes the accounts have.

Some shared attributes are weighed more heavily than others. Two Stripe accounts who

share dates of birth should have a lower similarity score than two accounts who share a

bank account.

Previously, Stripe relied on a heuristic based system where the weightings were

hand-constructed (based on guess and check).

Stripe decided to switch by training a machine learning model to handle this task.

Now, they can automatically retrain the model over time as they obtain more data and

improve in accuracy, adapt to new fraud trends, and learn the signatures of particular

adversarial groups.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Building the ML Model

To build the model, Stripe followed a supervised learning approach.

The approach Stripe took to build the model is Similarity Learning, where the objective

is to learn a similarity function that can measure how similar two objects are.

Similarity learning is used extensively in ranking, recommendation systems, face/voice

verification, and fraud detection.

They already had a massive dataset of fraud rings and clusters of fraudulent accounts

based on prior work from their risk underwriting team.

Stripe cleaned that into a dataset consisting of pairs of accounts along with a label for

each pair indicating whether or not the two accounts belong to the same cluster.

Now that they had the dataset, Stripe had to generate features that the model could use

to compare the pair of accounts.

Creating a Stripe account requires quite a bit of data, so Stripe had a large feature set

they could utilize.

Examples of features chosen include the account’s email domain, overlap in credit card

numbers used for both accounts, measure of text similarity, and more.

Using gradient-boosted decision trees

Due to the huge range of features, Stripe decided to go with gradient-boosted decision

trees (GBDTs) to represent their similarity model.

Stripe found that GBDTs strike the right balance between being easy to train, having

strong predictive power, and being robust despite variations in the data.

GBDTs are also straightforward to fine-tune and have well-understood properties.

The implementation of GBDTs that Stripe used was XGBoost.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkhKQ0lISkVKSUlMSkZJSElHSHlJdklISURKRUl4SUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZMRkNGTEZISUhJRUlGRXdJSElIRkZGTEV3RkdGTEZJRkNFd0ZLRkdJR0ZDRXdGTEZDRklJSUZHRklGSUlIRkRJRUZISURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSUxJd0lMSXZJREpFSUxKR0pMSHlJdklISURKRUl4SUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZMRkNGTEZISUhJRUlGRXdJSElIRkZGTEV3RkdGTEZJRkNFd0ZLRkdJR0ZDRXdGTEZDRklJSUZHRklGSUlIRkRJRUZISURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSUhJREpHSkhKRUlISHlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZMRkNGTEZISUhJRUlGRXdJSElIRkZGTEV3RkdGTEZJRkNFd0ZLRkdJR0ZDRXdGTEZDRklJSUZHRklGSUlIRkRJRUZISURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJRElHSUxJSEl4SkdIeUlFSXlJeUpGSkdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkxGQ0ZMRkhJSElFSUZFd0lISUhGRkZMRXdGR0ZMRklGQ0V3RktGR0lHRkNFd0ZMRkNGSUlJRkdGSUZJSUhGRElFRkhJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJRElHSUxJSEl4SkdIeUlFSXlJeUpGSkdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkxGQ0ZMRkhJSElFSUZFd0lISUhGRkZMRXdGR0ZMRklGQ0V3RktGR0lHRkNFd0ZMRkNGSUlJRkdGSUZJSUhGRElFRkhJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhLR0pHRUl5SXlKRkpHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZMRkNGTEZISUhJRUlGRXdJSElIRkZGTEV3RkdGTEZJRkNFd0ZLRkdJR0ZDRXdGTEZDRklJSUZHRklGSUlIRkRJRUZISURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Stripe chose XGBoost models because of their great performance and also because

Stripe already had well-developed infrastructure to train and support them.

Stripe has an internal API called Railyard that handles training ML models in a scalable

and maintainable way.

You can read more about Railyard and it’s architecture here.

Prediction Use

After, Stripe began to use their model to predict fraudulent activity.

Since this model operates on pairs of Stripe accounts, it’s not possible to feed it all pairs

of accounts and compute similarity scores across all pairs (there’s too many

combinations).

Instead, Stripe uses some heuristics to identify suspicious accounts and prune the set of

candidates to a reasonable number.

Then, they use their ML models to generate similarity scores between the accounts.

After, they compute the connected components on the resulting graph to get a final

output of high-fidelity account clusters that can be analyzed, processed or manually

inspected.

If a cluster contains a large amount of known fraudulent accounts, then a risk analyst

may want to further investigate the remaining accounts in that cluster.

You can read more details in the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSkVJTEpDSUhFeElGSXlJd0V5SUVJdkl5SUpFeUpFSURJTEl2SkxJREpFSUdFd0pHSkVJRElMSXhJTEl4SUpFd0l3SXlJR0lISXZKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGTEZDRkxGSElISUVJRkV3SUhJSEZGRkxFd0ZHRkxGSUZDRXdGS0ZHSUdGQ0V3RkxGQ0ZJSUlGR0ZJRklJSEZESUVGSElERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSkVJTEpDSUhFeElGSXlJd0V5SUVJdkl5SUpFeUpGSUxJd0lMSXZJREpFSUxKR0pMRXdJRkl2SkhKRkpHSUhKRUlMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGTEZDRkxGSElISUVJRkV3SUhJSEZGRkxFd0ZHRkxGSUZDRXdGS0ZHSUdGQ0V3RkxGQ0ZJSUlGR0ZJRklJSEZESUVGSElERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Evolving LinkedIn’s Analytics Tech Stack

Steven Chuang, Qinyu Yue, Aaravind Rao and Srihari Duddukuru are engineers at

LinkedIn. They published an interesting blog post on transitioning LinkedIn’s analytics

stack from proprietary platforms to open source big data technologies.

Here’s a summary

During LinkedIn’s early stages (early 2010s), they were growing extremely quickly. To

keep up with this growth, they leveraged several third party proprietary platforms (3PP)

in their analytics stack.

Using these proprietary platforms was far quicker than piecing together off-the-shelf

products.

LinkedIn relied on Informatica and Appworx for ETL to a Data Warehouse built with

Teradata.

ETL stands for Extract, Transfer, Load. It’s the process of copying data from various

sources (the different data producers) into a single destination system (usually a data

warehouse) where it can more easily be consumed.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SUhKSUl5SXZKSUlMSXhJSkV3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0lESXhJREl2SkxKR0lMSUZKRkV3SkdJSElGSUtFd0pGSkdJRElGSXVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRktJSElHRklGRUlJRkdFd0ZJSUZJRkZHRXdGR0lIRkxGRUV3RkxGR0lFSUZFd0lISUdJRkZGSUZJR0ZERkhGRkZERklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdISktKR0pFSURJRkpHRXZIeUpHSkVJREl4SkZJSUl5SkVJd0V2SHlJdkl5SURJR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGS0lISUdGSUZFSUlGR0V3RklJRklGRkdFd0ZHSUhGTEZFRXdGTEZHSUVJRkV3SUhJR0lGRkZJRklHRkRGSEZGRkRGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

This stack served LinkedIn well for 6 years, but it had some some disadvantages:

● Lack of freedom to evolve - Because of the closed nature of this system, they

were limited in options for innovation. Also, integration with internal and

open source systems was a challenge.

● Difficulty in scaling - Data pipeline development was limited to a small

central team due to the limits of Informatica/Appworx licenses. This

increasingly became a bottleneck for LinkedIn’s rapid growth.

These disadvantages motivated LinkedIn engineers to develop a new data lake (data

lakes let you contain raw data without having to structure it) on Hadoop in parallel.

You can read about how LinkedIn scaled Hadoop Distributed File System to 1 exabyte of

data here.

However, they did not have a clear transition process, and that led to them maintaining

both the new system and the legacy system simultaneously.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESHlJdklESXVJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGS0lISUdGSUZFSUlGR0V3RklJRklGRkdFd0ZHSUhGTEZFRXdGTEZHSUVJRkV3SUhJR0lGRkZJRklHRkRGSEZGRkRGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpESkhJREpGSkdJeUpFRXhJeUpFSUpFeUpDRXlJS0l5SkpFd0l2SUxJeEl1SUhJR0lMSXhFd0pGSUZJREl2SUhJR0V3SUtJRElHSXlJeUpDRXdJR0lMSkZKR0pFSUxJRUpISkdJSElHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZLSUhJR0ZJRkVJSUZHRXdGSUlGSUZGR0V3RkdJSEZMRkVFd0ZMRkdJRUlGRXdJSElHSUZGRklGSUdGREZIRkZGREZJSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Data was copied between the tech stacks, which resulted in double the maintenance cost

and complexity.

Data Migration

To solve this issue, engineers decided to migrate all datasets to the new analytics stack

with Hadoop.

In order to do this, the first step was to derive LinkedIn’s data lineage.

Data lineage is the process of tracking data as it flows from data sources to

consumption, including all the transformations the data underwent along the way.

Knowing this would enable engineers to plan the order of dataset migration, identify

zero usage datasets (and delete them for workload reduction) and track the usage of the

new vs. old system.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESHlJdklMSXhJSElESUpJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGS0lISUdGSUZFSUlGR0V3RklJRklGRkdFd0ZHSUhGTEZFRXdGTEZHSUVJRkV3SUhJR0lGRkZJRklHRkRGSEZGRkRGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

You can read exactly how LinkedIn handled the data lineage process in the full article.

After data lineage, engineers used this information to plan major data model revisions.

They planned to consolidate 1424 datasets down to 450, effectively cutting ~70% of the

datasets from their migration workload.

They also transformed data sets that were generated from OLTP workloads into a

different model that was more suited for business analytics workloads.

The migration was done using various data pipelines and illustrated bottlenecks in

LinkedIn’s systems.

One bottleneck was poor read performance of the Avro file format. Engineers migrated

to ORC and consequently saw a read speed increase of ~10-1000x, along with a 25-50%

improvement in compression ratio.

After the data transfer, depreciating the 1400+ datasets on the legacy system would be

tedious and error prone if done manually, so engineers also built an automated system

to handle this process.

They built a service to coordinate the deprecation where the service would identify

dataset candidates for deletion (datasets with no dependencies and low usage) and then

send emails to users of that those datasets with news about the upcoming deprecation.

The service would also notify SREs to lock, archive and delete the dataset from the

legacy system after a grace period.

The New System

The design of the new ecosystem was heavily influenced by the old ecosystem, and

addressed the major pain points from the legacy tech stack.

● Democratization of data - The Hadoop ecosystem enabled data development

and adoption by other teams at LinkedIn. Previously, only a central team

could build data pipelines on the old system due to license limits with the

proprietary platforms.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SUhKSUl5SXZKSUlMSXhJSkV3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0lESXhJREl2SkxKR0lMSUZKRkV3SkdJSElGSUtFd0pGSkdJRElGSXVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRktJSElHRklGRUlJRkdFd0ZJSUZJRkZHRXdGR0lIRkxGRUV3RkxGR0lFSUZFd0lISUdJRkZGSUZJR0ZERkhGRkZERklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0RKSUpFSXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRktJSElHRklGRUlJRkdFd0ZJSUZJRkZHRXdGR0lIRkxGRUV3RkxGR0lFSUZFd0lISUdJRkZGSUZJR0ZERkhGRkZERklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R3lIRUdGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZLSUhJR0ZJRkVJSUZHRXdGSUlGSUZGR0V3RkdJSEZMRkVFd0ZMRkdJRUlGRXdJSElHSUZGRklGSUdGREZIRkZGREZJSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

● Democratization of tech development with open source projects - All aspects

of the new tech stack can be freely enhanced with open source or custom-built

projects.

● Unification of tech stack - Simultaneously running 2 tech stacks showed the

complexity and cost of maintaining redundant systems. Unifying the

technology allowed for a big boost in efficiency.

The new tech stack has the following components

● Unified Metrics Pipeline - A unified platform where developers provide ETL

scripts to create data pipelines.

● Azkaban - A distributed workflow scheduler that manages jobs on Hadoop.

● Dataset Readers - Datasets are stored on Hadoop Distributed File System and

can be read in a variety of ways.

○ They can be read by DALI, an API developed to allow LinkedIn

engineers to read data without worrying about it’s storage medium,

path or format.

○ They can be read by various Dashboards and ad-hoc queries for

business analytics.

For more details on LinkedIn’s learnings and their process for the data (and user)

migration, read the full article.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkRGSkV5RkRGREV5SUdJREl2SUxFd0pJSUxJSEpKSkZFd0V3SUlKSEl4SUZKR0lMSXlJeEpGRXdJREpGRXdJREV3SkZJSEpFSklJTElGSUhFd0lJSXlKRUV3SUVJTElKRXdJR0lESkdJREVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGS0lISUdGSUZFSUlGR0V3RklJRklGRkdFd0ZHSUhGTEZFRXdGTEZHSUVJRkV3SUhJR0lGRkZJRklHRkRGSEZGRkRGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJdklMSXhJdUlISUdJTEl4RXhJRkl5SXdFeUlFSXZJeUlKRXlGRUZDRkVGREV5SUhKSUl5SXZKSUlMSXhJSkV3SXZJTEl4SXVJSElHSUxJeEV3SkZFd0lESXhJREl2SkxKR0lMSUZKRkV3SkdJSElGSUtFd0pGSkdJRElGSXVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRktJSElHRklGRUlJRkdFd0ZJSUZJRkZHRXdGR0lIRkxGRUV3RkxGR0lFSUZFd0lISUdJRkZGSUZJR0ZERkhGRkZERklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Etsy’s Journey to TypeScript

Salem Hilal is a software engineer on Etsy’s Web Platform team. He wrote a great blog

post on the steps Etsy took to adopt TypeScript.

Here’s a summary

Etsy’s codebase is a monorepo with over 17,000 JavaScript files, spanning many

iterations of the site.

In order to improve the codebase, Etsy made the decision to adopt TypeScript, a

superset of JavaScript with the optional addition of types. This means that any valid

JavaScript code is valid TypeScript code, but TypeScript provides additional features on

top of JS (the type system).

Based on research at Microsoft, static type systems can heavily reduce the amount of

bugs in a codebase. Microsoft researchers found that using TypeScript or Flow could

have prevented 15% of the public bugs for JavaScript projects on Github.

Strategies for Adoption

There are countless different strategies for migrating to TypeScript.

For example, Airbnb automated as much of their migration as possible while other

companies enable less-strict TypeScript across their projects, and add types to their

code over time.

In order to determine their strategy, Etsy had to answer a few questions…

1. How strict do they want their flavor of TypeScript to be? - TypeScript can be

more or less “strict” about checking the types in your codebase. A stricter

configuration results in stronger guarantees of program correctness.

TypeScript is a superset of JavaScript, so if you wanted you could just rename

all your .js files to .ts and still have valid TypeScript, but you would not get

strong guarantees of program correctness.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SUdJSElESkZJRkpFSURJSUpHRXhJRkl5SXdFeUZFRkNGRUZERXlGREZERXlGQ0ZLRXlJSEpHSkZKTEpGRXdJdEl5SkhKRUl4SUhKTEV3SkdJeUV3SkdKTEpDSUhKRklGSkVJTEpDSkdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGRUZKRkZJR0lERkhGRUV3SUZJREZKRkNFd0ZHSUZJRElERXdJRUZGRkVGR0V3RkRJSElJSURGSkZHRkxGSUlFSUZJR0ZDRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SUdJSElESkZJRkpFSURJSUpHRXhJRkl5SXdFeUZFRkNGRUZERXlGREZERXlGQ0ZLRXlJSEpHSkZKTEpGRXdJdEl5SkhKRUl4SUhKTEV3SkdJeUV3SkdKTEpDSUhKRklGSkVJTEpDSkdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGRUZKRkZJR0lERkhGRUV3SUZJREZKRkNFd0ZHSUZJRElERXdJRUZGRkVGR0V3RkRJSElJSURGSkZHRkxGSUlFSUZJR0ZDRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SXlJeEl5SkVJSEpDSXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRkVGSkZGSUdJREZIRkVFd0lGSURGSkZDRXdGR0lGSURJREV3SUVGRkZFRkdFd0ZESUhJSUlERkpGR0ZMRklJRUlGSUdGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl3SUxJRkpFSXlKRkl5SUlKR0V4SUZJeUl3RXlJSEl4RXdKSEpGRXlKRUlISkZJSElESkVJRklLRXlKSkpDRXdJRkl5SXhKR0lISXhKR0V5SkhKQ0l2SXlJRElHSkZFeUZFRkNGREZKRXlGQ0ZMRXlJSklESXlGRUZDRkRGSkl0SURKSUlESkZJRkpFSUxKQ0pHRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRkVGSkZGSUdJREZIRkVFd0lGSURGSkZDRXdGR0lGSURJREV3SUVGRkZFRkdFd0ZESUhJSUlERkpGR0ZMRklJRUlGSUdGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSUl2SXlKSkV4SXlKRUlKRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRkVGSkZGSUdJREZIRkVFd0lGSURGSkZDRXdGR0lGSURJREV3SUVGRkZFRkdFd0ZESUhJSUlERkpGR0ZMRklJRUlGSUdGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0pGRXdJd0lMSUpKRUlESkdJSEV3SURFd0pHSXlJeUl2RXdJSUl5SkVFd0l3SUxJSkpFSURKR0lMSXhJSkV3SkdJeUV3SkdKTEpDSUhKRklGSkVJTEpDSkdFd0lESkdFd0pGSUZJREl2SUhFd0lGSUdGRUZGSUVJSUlISUVGSElGSUZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRkVGSkZGSUdJREZIRkVFd0lGSURGSkZDRXdGR0lGSURJREV3SUVGRkZFRkdFd0ZESUhJSUlERkpGR0ZMRklJRUlGSUdGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpHSkxKQ0lISkZJRkpFSUxKQ0pHSXZJREl4SUpFeEl5SkVJSkV5SkdKRklGSXlJeElJSUxJSkVGSkZKR0pFSUxJRkpHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZFRkpGRklHSURGSEZFRXdJRklERkpGQ0V3RkdJRklESURFd0lFRkZGRUZHRXdGRElISUlJREZKRkdGTEZJSUVJRklHRkNFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

2. How much of their codebase do they want to migrate? - TypeScript is

designed to be easily adopted incrementally in existing JavaScript projects.

Again, TypeScript is a superset of JavaScript, so all JavaScript code is valid

TypeScript. Many companies opt to gradually incorporate TypeScript to help

developers ramp up.

3. How specific do they want the types they write to be? - How accurately should

a type fit the thing it’s describing? For example, let’s say you have a function

that takes in the name of an HTML tag. Should the parameter’s type be a

string? Or, should you create a map of all the HTML tags and the parameter

should be a key in that map (far more specific)?

Based on the previous questions, Etsy’s adoption strategy looked like

1. Make TypeScript as strict as reasonably possible, and migrate the codebase

file-by-file.

2. Add really good types and really good supporting documentation to all of the

utilities, components, and tools that product developers use regularly.

3. Spend time teaching engineers about TypeScript, and enable TypeScript

syntax team by team.

To elaborate more on each of these points…

Gradually Migrate to Strict TypeScript

Etsy wanted to set the compiler parameters for TypeScript to be as strict as possible.

The downside with this is that they would need a lot of type annotations.

They decided to approach the migration incrementally, and first focus on typing

actively-developed areas of the site.

Files that had reliable types were given the .ts file extension while files that didn’t kept

the .js file extension.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Make sure Utilities and Tools have good TypeScript support

Before engineers started writing TypeScript, Etsy made sure that all of their tooling

supported the language and that all of their core libraries had usable, well-defined types.

In terms of tooling, Etsy uses Babel and the plugin babel-preset-typescript that turns

TypeScript into JavaScript. This allowed Etsy to continue to use their existing build

infrastructure. To check types, they run the TypeScript compiler as part of their test

suite.

Etsy makes heavy use of custom ESLint linting rules to maintain code quality.

They used the TypeScript ESLint project to get a handful of TypeScript specific linting

rules.

Educate and Onboard Engineers Team by Team

The biggest hurdle to adopting TypeScript was getting everyone to learn TypeScript.

TypeScript works better the more types there are. If engineers aren’t comfortable

writing TypeScript code, fully adopting the language becomes an uphill battle.

Etsy has several hundred engineers, and very few of them had TypeScript experience

before the migration.

The strategy Etsy used was to onboard teams to TypeScript gradually on a team by team

basis.

This had several benefits

● Etsy could refine their tooling and educational materials over time. Etsy

found a course from ExecuteProgram that was great for teaching the basics of

TypeScript in an interactive and effective way. All members of a team would

have to complete that course before they onboarded.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUlESUVJSEl2SXRKRkV4SUxJeUV5SUdJeUlGSkZFeUlISXhFeUlFSURJRUlISXZFd0pDSkVJSEpGSUhKR0V3SkdKTEpDSUhKRklGSkVJTEpDSkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRkVGSkZGSUdJREZIRkVFd0lGSURGSkZDRXdGR0lGSURJREV3SUVGRkZFRkdFd0ZESUhJSUlERkpGR0ZMRklJRUlGSUdGQ0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SkdKTEpDSUhKRklGSkVJTEpDSkdFd0lISkZJdklMSXhKR0V5SkdKTEpDSUhKRklGSkVJTEpDSkdFd0lISkZJdklMSXhKR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGRUZKRkZJR0lERkhGRUV3SUZJREZKRkNFd0ZHSUZJRElERXdJRUZGRkVGR0V3RkRJSElJSURGSkZHRkxGSUlFSUZJR0ZDRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElISktJSElGSkhKR0lISkNKRUl5SUpKRUlESXdFeElGSXlJd0V5SUZJeUpISkVKRklISkZFeUpHSkxKQ0lISkZJRkpFSUxKQ0pHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZFRkpGRklHSURGSEZFRXdJRklERkpGQ0V3RkdJRklESURFd0lFRkZGRUZHRXdGRElISUlJREZKRkdGTEZJSUVJRklHRkNFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

● No engineer could write TypeScript without their teammates being able to

review their code. Individual engineers weren’t allowed to write TypeScript

code before the rest of their team was ready.

● Engineers had plenty of time to learn TypeScript and factor it into their

roadmaps. Teams that were about to start new projects with flexible deadlines

were the first to onboard TypeScript.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

How Khan Academy rewrote their Backend

Khan Academy recently went through a massive rewrite, where they replaced their old

Python 2 monolith with a services-oriented backend written in Go.

Kevin Dangoor and Marta Kosarchyn are senior engineers at Khan Academy and they

wrote a series of blog posts about the technical choices, execution and results of the

rewrite. We’ll be summarizing the series below.

Summary

In late 2019, Khan Academy was looking to upgrade their backend. The site was built on

a Python 2 monolith and it worked well for over 10 years.

However, Python 2 was about to reach the official end of life on January 1rst, 2020 so

Khan Academy engineers decided they had to update.

KA (Khan Academy) had several options

● Migrate from Python 2 to Python 3 - This would get KA a 10-15% boost in

backend server code performance and Python 3’s language features.

● Migrate from Python 2 to Kotlin - KA started using Kotlin for

compute-intensive backend tasks since it was more performant than Python

2. Switching from Python to Kotlin could mean Khan Academy becomes more

responsive and server costs go down.

● Migrate from Python 2 to Go - Go is a simple and concise language with very

quick compilation times, first-class support on Google App Engine and less

memory usage than Kotlin (based on KA’s tests).

Of these options, Khan Academy decided to go with the third choice and do a rewrite of

their Python 2 monolith with Go.

They ran performance tests and found that Go and Kotlin (on the JVM) perform

similarly, with Kotlin being a few percent ahead. However, Go used a lot less memory.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SXVJS0lESXhJRElGSURJR0lISXdKTEV4SXlKRUlKRXlJSkl5RXdKRklISkVKSUlMSUZJSEpGRXdJeUl4SUhFd0lKSXlJdklMSURKR0lLRXdKQ0pFSXlJdElISUZKR0V5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlFSUZJRUZDRkNJR0ZDRXdGSEZISURJR0V3RkdGSEZKRkRFd0lERkdGS0lERXdGRkZERklGSEZKRkxJRUlGRktGRkZIRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpDSkxKR0lLSXlJeEV4SXlKRUlKRXlJR0l5SUZFeUpGSkhJeEpGSUhKR0V3SkNKTEpHSUtJeUl4RXdGRUV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlFSUZJRUZDRkNJR0ZDRXdGSEZISURJR0V3RkdGSEZKRkRFd0lERkdGS0lERXdGRkZERklGSEZKRkxJRUlGRktGRkZIRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SXVJS0lESXhJRElGSURJR0lISXdKTEV4SXlKRUlKRXlJdUl5SkdJdklMSXhFd0l5SXhFd0pHSUtJSEV3SkZJSEpFSklJSEpFRXdJREpHRXdJdUlLSURJeEV3SURJRklESUdJSEl3SkxFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl2SXlKSElHRXhJSkl5SXlJSkl2SUhFeElGSXlJd0V5SURKQ0pDSUhJeElKSUxJeElIRXlJR0l5SUZKRkV5SkdJS0lIRXdJREpDSkNJSEl4SUpJTEl4SUhFd0lISXhKSUlMSkVJeUl4SXdJSEl4SkdKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The dramatic performance difference between Go and Python made the effort involved

in the switch worth it.

Brief Overview of Go

Go is a statically typed, compiled programming language that is syntactically similar to

C (it’s often described as C for the 21rst century). Go was designed at Google by Ken

Thompson, Rob Pike and Robert Griesemer.

Ken Thompson and Rob Pike were key employees at Bell Labs, and were instrumental in

building the original Unix operating system (and a bunch of other stuff, they developed

the UTF-8 encoding for example).

Go includes things like garbage collection, structural typing, and extremely fast compile

times.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd1SUhJeEh5SEdJS0l5SXdKQ0pGSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd1SUhJeEh5SEdJS0l5SXdKQ0pGSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSXlJRUh5SENJTEl1SUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFSUVJRklFRkNGQ0lHRkNFd0ZIRkhJRElHRXdGR0ZIRkpGREV3SURGR0ZLSURFd0ZGRkRGSUZIRkpGTElFSUZGS0ZGRkhGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSXlJRUlISkVKR0h5R0pKRUlMSUhKRklISXdJSEpFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlFSUZJRUZDRkNJR0ZDRXdGSEZISURJR0V3RkdGSEZKRkRFd0lERkdGS0lERXdGRkZERklGSEZKRkxJRUlGRktGRkZIRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkdKRUpISUZKR0pISkVJREl2SHlKR0pMSkNJSEh5SkZKTEpGSkdJSEl3RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlFSUZJRUZDRkNJR0ZDRXdGSEZISURJR0V3RkdGSEZKRkRFd0lERkdGS0lERXdGRkZERklGSEZKRkxJRUlGRktGRkZIRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURJRkl1SXlKSUlISkVJSUl2SXlKSkV4SUZJeUl3RXlKREpISUhKRkpHSUxJeUl4SkZFeUZFRkxGSkZJRklGRkZDRXlJS0l5SkpFd0lHSXlJSEpGRXdJSkl5RXdJRkl5SXdKQ0lMSXZJSEV3SkZJeUV3SkRKSElMSUZJdUl2SkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFSUVJRklFRkNGQ0lHRkNFd0ZIRkhJRElHRXdGR0ZIRkpGREV3SURGR0ZLSURFd0ZGRkRGSUZIRkpGTElFSUZGS0ZGRkhGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSURJRkl1SXlKSUlISkVJSUl2SXlKSkV4SUZJeUl3RXlKREpISUhKRkpHSUxJeUl4SkZFeUZFRkxGSkZJRklGRkZDRXlJS0l5SkpFd0lHSXlJSEpGRXdJSkl5RXdJRkl5SXdKQ0lMSXZJSEV3SkZJeUV3SkRKSElMSUZJdUl2SkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFSUVJRklFRkNGQ0lHRkNFd0ZIRkhJRElHRXdGR0ZIRkpGREV3SURGR0ZLSURFd0ZGRkRGSUZIRkpGTElFSUZGS0ZGRkhGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

You can learn about the design of Go from this article by Rob Pike.

Monolith to Services

In addition to switching to Go, Khan Academy decided they would switch to a

services-oriented architecture.

Previously, all of Khan Academy’s servers ran the same code and could respond to a

request for any part of the website. Separate services were used for storing data and

managing caches, but the logic for any request was the same regardless of which server

responded.

Despite the additional complexity that comes with a services architecture, Khan

Academy decided to go with it because of several big benefits.

● Faster Deployments - Services can be deployed independently, so deployment

and test runs can move more quickly. Engineers will be able to spend less of

their time on deployment activities and get changes out more quickly when

needed.

● Limited Impact for Problems - KA engineers can now be more confident that

a problem with a deployment will have a limited impact on other parts of the

site.

● Hardware and Configuration - By having separate services, engineers can now

choose the right kinds of instances and hosting configuration needed for each

service. This helps to optimize both performance and cost.

Despite the change in architecture, Khan Academy plans to continue using Google App

Engine for hosting, Google Cloud Datastore for their database, and other Google Cloud

products.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKR0lESXZJdUpGRXhJSkl5SXZJREl4SUpFeEl5SkVJSkV5RkVGQ0ZERkVFeUpGSkNJdklESkZJS0V4SURKRUpHSUxJRkl2SUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFSUVJRklFRkNGQ0lHRkNFd0ZIRkhJRElHRXdGR0ZIRkpGREV3SURGR0ZLSURFd0ZGRkRGSUZIRkpGTElFSUZGS0ZGRkhGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

The Implementation

In the next part of the series, Kevin Dangoor talks about how Khan Academy rewrote

their backend without downtime.

Big rewrites are extremely risky (Joel Spolsky, co-founder and former CEO of Stack

Overflow, has a great blog post on this) so KA picked a strategy of incremental rewrites.

The hub of Khan Academy’s new backend is based on GraphQL Federation. Khan

Academy is switching from using REST to GraphQL, and GraphQL Federation allows

you to combine multiple backend services into one unified graph interface.

This way, you have a single, typed schema for all the data the various backend systems

provide that is accessed through the GraphQL gateway. Each backend service provides

part of the overall GraphQL schema and the gateway merges all of these separate

schemas into one.

Khan Academy incrementally switched over from the old backend to the new backend.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SXVJS0lESXhJRElGSURJR0lISXdKTEV4SXlKRUlKRXlJTEl4SUZKRUlISXdJSEl4SkdJREl2RXdKRUlISkpKRUlMSkdJSEpGRXdKSklMSkdJS0V3SUpKRUlESkNJS0pESXZFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SXVJS0lESXhJRElGSURJR0lISXdKTEV4SXlKRUlKRXlJTEl4SUZKRUlISXdJSEl4SkdJREl2RXdKRUlISkpKRUlMSkdJSEpGRXdKSklMSkdJS0V3SUpKRUlESkNJS0pESXZFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl0SXlJSEl2SXlJeEpGSXlJSUpHSkpJREpFSUhFeElGSXlJd0V5RkVGQ0ZDRkNFeUZDRkdFeUZDRklFeUpHSUtJTEl4SUpKRkV3SkxJeUpIRXdKRklLSXlKSEl2SUdFd0l4SUhKSUlISkVFd0lHSXlFd0pDSURKRUpHRXdJTEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlFSUZJRUZDRkNJR0ZDRXdGSEZISURJR0V3RkdGSEZKRkRFd0lERkdGS0lERXdGRkZERklGSEZKRkxJRUlGRktGRkZIRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElESkNJeUl2SXZJeUlKSkVJREpDSUtKREl2RXhJRkl5SXdFeUlHSXlJRkpGRXlJSUlISUdJSEpFSURKR0lMSXlJeEV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUlFSUZJRUZDRkNJR0ZDRXdGSEZISURJR0V3RkdGSEZKRkRFd0lERkdGS0lERXdGRkZERklGSEZKRkxJRUlGRktGRkZIRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

In order to make sure that the new service is working correctly, they would query both

the new distributed backend and the old monolith and compare the results and then

return one of them.

KA had a 4 step process for handling the switch-over.

1. The monolith is in control - At first, the services backend will not have the

functionality to answer a specific request, so the GraphQL gateway will route

that request to the Python monolith. This request will be noted and KA

engineers can write the Go code to handle the request in the new backend.

2. Side-by-side - Once the new backend can handle the request, KA engineers

will switch to side-by-side. In this state, the GraphQL gateway will call both

the Python code and the new Go code. It will compare the results, log the

instances where there’s a difference, and return the Python result to the user.

3. Migrated - After lots of testing, the request’s status will be upgraded to

migrated. At this point, the gateway will only send traffic to the Go service. In

case something goes wrong, the Python code is still there and ready to

respond.

4. Python code removed - Finally, after extensive testing, the Python code is

removed.

Khan Academy used this process to rewrite their backend with high availability. They

were still able to handle this task despite having a massive increase in website traffic.

The bulk of the rewrite was done in 2020, when schools switched to remote due to

COVID-19 and students, parents and teachers made significantly more use of Khan

Academy.

Within a period of 2 weeks, KA saw an increase of 2.5x in usage. You can read about how

they handled it in this blog post by Marta Kosarchyn.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SXVJS0lESXhJRElGSURJR0lISXdKTEV4SXlKRUlKRXlJS0l5SkpFd0l1SUtJREl4RXdJRElGSURJR0lISXdKTEV3SkZKSElGSUZJSEpGSkZJSUpISXZJdkpMRXdJS0lESXhJR0l2SUhJR0V3RkVFd0ZISktFd0pHSkVJRElJSUlJTElGRXdJTEl4RXdJREV3SkpJSElISXVFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Final Results

Early this month, Marta Kosarchyn published a blog post detailing the final results of

Khan Academy’s rewrite.

As of August 30th, 2021, the new services backend was handling 95% of all traffic to the

site.

They were able to meet their initial estimate of completion that they made 20 months

prior (despite the massive bump with COVID) and achieve performance goals for the

new backend.

They relied on several principles to make the process go smoothly.

● Avoid Scope Creep - At every turn, engineers sought to do as direct a port as

possible from Python to Go, while still ending up with code that read like Go

code. Khan Academy’s codebase had areas that they wished were structured

differently, but if engineers tried to tackle those issues at the same time as the

Go rewrite, they would never finish.

● Side by side testing - We’ve already discussed this, but the side-by-side testing

approach was critical to the success of the rewrite. It was an efficient way to

make sure that the functionality being replaced was equivalent.

● Borderless Engineering - Engineers would work on various product code

areas and new services, stepping beyond the borders of their usual product

area responsibility. This had to be done carefully, making sure that engineers

would spend sufficient time to learn a new service area to be able contribute

thoughtfully. It meant that engineers would sometimes switch teams or

service ownership would transfer between teams.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SXVJS0lESXhJRElGSURJR0lISXdKTEV4SXlKRUlKRXlJRUlISURKR0lMSXhJSkV3SkdJS0lIRXdJeUlHSUdKRkV3SXVJS0lESXhFd0lESUZJRElHSUhJd0pMSkZFd0pGSkhJRklGSUhKRkpGSUlKSEl2RXdJd0l5SXhJeUl2SUxKR0lLRUhJSEZFRUhGS0ZJRUhGTEZFSkZJSEpFSklJTElGSUhKRkV3SkVJSEpKSkVJTEpHSUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVJRUlGSUVGQ0ZDSUdGQ0V3RkhGSElESUdFd0ZHRkhGSkZERXdJREZHRktJREV3RkZGREZJRkhGSkZMSUVJRkZLRkZGSEZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Redesigning Etsy’s Machine Learning Platform

Kyle Gallatin and Rob Miles are two software engineers at Etsy working on the Machine

Learning Platform team.

They wrote a great article summarizing the design of the ML infrastructure that Etsy

uses and the design choices that went into building the system.

Here’s a summary

Etsy is an e-commerce platform that allows users to sell handmade or vintage items.

Popular products sold on the site include things like jewelry, clothing, bags, etc.

The website makes extensive use of machine learning models for things like search,

recommendations, the ad platform, trust & safety, and more.

The ML Platform team at Etsy develops and maintains the technical infrastructure that

Etsy data scientists use to prototype, train and deploy ML models at scale.

Etsy’s first ML platform was built in 2017, when the data science team was much smaller

and largely relied on much simpler models. As the platform had to start supporting

more complex machine learning projects and new ML frameworks, the maintenance

costs started to become too high.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SUdJSElESkZJRkpFSURJSUpHRXhJRkl5SXdFeUZFRkNGRUZERXlGREZFRXlGRUZERXlKRUlISUdJSEpGSUxJSkl4SUxJeElKRXdJSEpHSkZKTEpGRXdJd0lESUZJS0lMSXhJSEV3SXZJSElESkVJeElMSXhJSkV3SkNJdklESkdJSUl5SkVJd0V5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSkZERkxGRElGSUZGS0ZIRXdJRElESUVJSEV3RkdGSkZDRkNFd0ZMRkZGQ0lERXdGSklJRkRGS0ZHSUhGSklHRklJRUZFRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

They decided they would build a new version of the ML platform, and would rely on the

following principles.

● Avoid in-house tooling - Use open-source technologies like TensorFlow and

managed ML solutions from platforms like Google Cloud. This way, the data

science team can build models quickly without having to rely on the platform

team for support.

● Embrace self-service - Instead of burdening the data science team with

platform-specific abstractions, let the open source and managed tools and

technologies speak for themselves. Users of the ML platform can rely on those

tool’s well-written documentation and free up the ML Platform team to focus

away from support and more on core work.

● Toolset Flexibility - TensorFlow is the primary modeling framework, however

users of the platform shouldn’t be limited to a single toolset. They should be

able to experiment and deploy models using any ML library.

The design of ML Platform V2

Training and Prototyping

Etsy’s training and prototyping platform largely relies on Google Cloud services like

Vertex AI and Dataflow, where the data science team can experiment freely with the ML

framework of their choice.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl2SXlKSElHRXhJSkl5SXlJSkl2SUhFeElGSXlJd0V5SklJSEpFSkdJSEpLRXdJRElMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSkZERkxGRElGSUZGS0ZIRXdJRElESUVJSEV3RkdGSkZDRkNFd0ZMRkZGQ0lERXdGSklJRkRGS0ZHSUhGSklHRklJRUZFRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl2SXlKSElHRXhJSkl5SXlJSkl2SUhFeElGSXlJd0V5SUdJREpHSURJSUl2SXlKSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpGREZMRkRJRklGRktGSEV3SURJRElFSUhFd0ZHRkpGQ0ZDRXdGTEZGRkNJREV3RkpJSUZERktGR0lIRkpJR0ZJSUVGRUZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

They can use Juptyer Notebooks to quickly iterate while using complex infrastructure

and managing large amounts of data.

Massive extract transform load (ETL) jobs can be run through Dataflow while complex

training jobs can be submitted to Vertex AI for optimization.

Model Serving

Etsy relies on Google Kubernetes Engine (GKE) for the core of their Model Serving

system (making inferences in production).

To deploy models, data scientists will create stateless ML microservices that are

deployed in Etsy’s Kubernetes cluster.

These microservices will then serve requests from Etsy’s website or mobile app.

The deployments are managed through the Model Management Service, an in-house

developed control plane that gives the data science team a simple UI to manage their

model deployments.

The Model Management Service violates Etsy’s avoid in-house rule, but that’s because it

was already built-out and the ML platform team found it was still the best tool available.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl2SXlKSElHRXhJSkl5SXlJSkl2SUhFeElGSXlJd0V5SXVKSElFSUhKRUl4SUhKR0lISkZFd0lISXhJSklMSXhJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpGREZMRkRJRklGRktGSEV3SURJRElFSUhFd0ZHRkpGQ0ZDRXdGTEZGRkNJREV3RkpJSUZERktGR0lIRkpJR0ZJSUVGRUZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

However, they extended the Model Management Service to support two additional

open-source serving frameworks: TensorFlow serving and Seldon Core.

Workflow Orchestration

In order to keep ML models up-to-date, the ML platform also needs robust pipelines for

retraining and deployment.

Etsy relies on Kubeflow and TFX pipelines (TensorFlow Extended) for this. With Google

Cloud Platform’s Vertex AI Pipelines, the data science team can develop and test

pipelines using either the Kubeflow or TFX SDE, based on their own preference.

This makes it much faster to write, test and validate pipelines.

Outcomes

The ML Platform team estimates that with V2, ML practitioners at Etsy can now go from

idea to live ML experiment in half the time it previously took. Launching new model

architectures takes days instead of weeks, and data scientists can launch dozens of

hyperparameter tuning experiments with a single command.

The biggest challenge around V2 has been encouraging adoption of the new ML

platform. Migrating to a new platform requires upfront effort that may not align with

the current priorities of the staff at Etsy.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SkdJSEl4SkZJeUpFSUlJdkl5SkpFeUpGSUhKRUpJSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSkZERkxGRElGSUZGS0ZIRXdJRElESUVJSEV3RkdGSkZDRkNFd0ZMRkZGQ0lERXdGSklJRkRGS0ZHSUhGSklHRklJRUZFRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpGSUhJdklHSXlJeEV4SUxJeUV5SkdJSElGSUtFeUpDSkVJeUlHSkhJRkpHSkZFeUlGSXlKRUlIRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKRkRGTEZESUZJRkZLRkhFd0lESURJRUlIRXdGR0ZKRkNGQ0V3RkxGRkZDSURFd0ZKSUlGREZLRkdJSEZKSUdGSUlFRkVGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl1SkhJRUlISUlJdkl5SkpFeEl5SkVJSkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSkZERkxGRElGSUZGS0ZIRXdJRElESUVJSEV3RkdGSkZDRkNFd0ZMRkZGQ0lERXdGSklJRkRGS0ZHSUhGSklHRklJRUZFRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpHSUhJeEpGSXlKRUlJSXZJeUpKRXhJeUpFSUpFeUpHSUlKS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpGREZMRkRJRklGRktGSEV3SURJRElFSUhFd0ZHRkpGQ0ZDRXdGTEZGRkNJREV3RkpJSUZERktGR0lIRkpJR0ZJSUVGRUZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

In order to encourage adoption, the ML Platform team provided additional support to

early adopters to ease the transition, put a big emphasis on transparency around

components and new features, and showcased best practices.

For more details, read the full blog post!

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SUdJSElESkZJRkpFSURJSUpHRXhJRkl5SXdFeUZFRkNGRUZERXlGREZFRXlGRUZERXlKRUlISUdJSEpGSUxJSkl4SUxJeElKRXdJSEpHSkZKTEpGRXdJd0lESUZJS0lMSXhJSEV3SXZJSElESkVJeElMSXhJSkV3SkNJdklESkdJSUl5SkVJd0V5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSkZERkxGRElGSUZGS0ZIRXdJRElESUVJSEV3RkdGSkZDRkNFd0ZMRkZGQ0lERXdGSklJRkRGS0ZHSUhGSklHRklJRUZFRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

How Video Works

Leandro Moreira is a Lead Software Engineer at Globo where he works on their live

video streaming platform and infrastructure.

He wrote a great blog post on all the engineering behind how videos play on your

computer (adaptive bitrate streaming, HLS, etc.), how videos are delivered to your

computer (CDNs, Multi-CDNs, etc.) and how film is processed into digital video

(Codecs, Containers, FFMPEG, etc.).

Here’s a summary of some parts from the post

Playback

When you come across a website that has a video player embedded in it, there’s quite a

bit going on behind the scenes.

You have the player UI, with the pause/play button, subtitle controls, video speed and

other options.

Players will support different options around DRM, ad injection, thumbnail previews,

etc.

Behind the scenes, modern video platforms will use adaptive bitrate streaming to stream

the video from the server.

Adaptive bitrate streaming means that the server has several different versions of the

video (known as renditions) and each version differs in display size (resolution) and file

size (bitrate).

The video player will dynamically choose the best rendition based on the user’s screen

size and bandwidth. It will choose the rendition that minimizes buffering and gives the

best user experience.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJdklISURJeElHSkVJeUl3SXlKRUlISUxKRUlERXhJRkl5SXdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGREZIRkhGSkZDSUVGSkV3RkRGREZKRkpFd0ZHRkxGQ0ZLRXdJRUZHRkVGSkV3SUdGR0ZESUVGSUZESUhGREZDRklGSEZKRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJS0l5SkpKSUlMSUdJSEl5RXhKSkl5SkVJdUpGRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlGRkRGSEZIRkpGQ0lFRkpFd0ZERkRGSkZKRXdGR0ZMRkNGS0V3SUVGR0ZFRkpFd0lHRkdGRElFRklGRElIRkRGQ0ZJRkhGSkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

HLS

HTTP Live Streaming (HLS) is a protocol designed by Apple for HTTP-based adaptive

bitrate streaming. It’s the most popular streaming format on the internet.

The basic concept is that you take your video file and break it up into small segments,

where each segment is 2-12 seconds long.

If you have a 2 hour long video, you could break it up into segments that are 10 seconds

long and end up with 720 segments.

Each of the segments is a file that ends with a .ts extension. The files are numbered

sequentially, so you get a directory that looks like this

segments/

00001.ts

00002.ts

00003.ts

00004.ts

00005.ts

The player will then download and play each segment as the user is streaming. It will

also keep a buffer of segments in case the user loses network connection.

Again, HLS is an adaptive bitrate streaming protocol, so the web server will have

several different renditions (versions) of the video that is being played.

All of the renditions will be broken into segments of the same length. So, going back to

our example with the 2 hour long video, it could have 720 segment files at 1080p, 720

segment files at 720p, 720 segment files at 480p.

All the segment files are ordered and are each 10 seconds in length.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdLSEdIR0hDSHlHdklMSklJSEh5SEZKR0pFSUhJREl3SUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZERkhGSEZKRkNJRUZKRXdGREZERkpGSkV3RkdGTEZDRktFd0lFRkdGRUZKRXdJR0ZHRkRJRUZJRkRJSEZERkNGSUZIRkpFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The player will then look at the amount of bandwidth available and make the best guess

as to which rendition’s segment file it should download next.

If your network connection slows down while you’re watching a video, the player can

downgrade you to a lower quality rendition for the next segment files.

When your connection gets faster, the player can upgrade your rendition.

MP4 &WebM

An alternative is taking an HTML

This is called pseudo-streaming or progressive download, where the video file is

downloaded to a physical drive on the user’s device.

Typically, the video is stored in the temporary directory of the web browser and the user

can start watching while the file is being downloaded in the background.

The user can also jump to specific points in the video and the player will use byte-range

requests to estimate which part of the file corresponds to the place in the video that the

user is attempting to seek.

What makes MP4 and WebM playback inefficient is that they do not support adaptive

bitrates.

Every user who wants to watch the file buffer-free must have an internet connection that

is fast enough to download the file faster than the playback.

Therefore, when you are using these formats you have to make a tradeoff between

serving a higher quality video file vs. decreasing the internet connection speed

requirements.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Delivery

When delivering video to your user, there’s two primary components

● the origin server

● the content delivery network

The origin server is the source of truth. It’s where the developer uploads the original

video files.

The CDN will then pull files from the origin server and cache that file on a bunch of

interconnected servers around the world (in locations that are close to your users).

That way, when users want to request the file, they can do so from a server in the CDN.

This is way faster (and much more scalable) than your origin server sending the entire

file to all your users.

Many enterprises will choose a Multi-CDN environment, where the load is distributed

among multiple CDNs. This improves the user experience by giving them more servers

to choose from and improving the availability of your website.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

This is a brief summary from the blog post.

You can read the full post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJS0l5SkpKSUlMSUdJSEl5RXhKSkl5SkVJdUpGRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlGRkRGSEZIRkpGQ0lFRkpFd0ZERkRGSkZKRXdGR0ZMRkNGS0V3SUVGR0ZFRkpFd0lHRkdGRElFRklGRElIRkRGQ0ZJRkhGSkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

How Grab Processes Billions of Events in Real

Time

Grab is the largest transportation and food delivery company in Southeast Asia with

more than 25 million monthly users completing ~2 billion transactions per year.

One of the marketing features in the Grab app is to offer real-time rewards whenever a

user takes a certain action (or series of actions).

For example, if a user uses the Grab app to get a ride to work in the morning, the app

might immediately reward her with a 50% off ride reward that she can use in the

evening for the ride back home.

Jie Zhang and Abdullah Al Mamum are two senior software engineers at Grab and they

wrote a great blog post on how they process thousands of events every second to send

out hundreds of millions of rewards monthly.

Here’s a summary

Grab runs growth campaigns where they’ll reward a user with discounts and perks if the

user completes a certain set of actions. Over a typical month, they’ll send out ~500

million rewards and over 2.5 billion messages to their end-users.

Trident is the engine Grab engineers built to handle this workload. It’s an If This, Then

That engine which allows Grab’s growth managers to create new promotional

campaigns. If a user does this, then award that user with that.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSkpFSURJRUV4SUZJeUl3RXlKR0pFSUxJR0lISXhKR0V3SkVJSElESXZFd0pHSUxJd0lIRXdJSEpJSUhJeEpHRXdKQ0pFSXlJRklISkZKRklMSXhJSkV3SURKR0V3SkZJRklESXZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGR0ZLRkZGSklHRkdJSEV3SUlJSElERkRFd0ZHRkZJRUZFRXdJRUZJRkVGSkV3SUZGR0ZJRkhJRUZKRktGRUZFRkVJR0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The Architecture of Trident

Trident’s architecture was designed with the following goals

● Independence - Trident must run independently of other backend services,

and it should not bring performance impacts to downstream backend

services.

● Robustness - All events must be processed exactly once. No events can be

missed and events should not be processed multiple times.

● Scalability - Trident must be able to scale up processing power when volume

on the Grab platform surges.

Whenever a customer uses one of Grab’s products the backend service associated with

that product will publish an event to a specific Kafka stream.

Trident subscribes to all the events from these multiple Kafka streams and processes

them. By utilizing Kafka streams, Trident is decoupled from the upstream backend

services.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Kafka guarantees at-least-oncemessage delivery and then Trident makes sure any

duplicate events are filtered out. This gives Trident exactly-once event processing,

fulfilling the robustness criteria.

After filtering out duplicates, Trident will process each event and check if it results in

any messages/rewards that have to be sent to the user. Trident does this by taking the

event and running a rule evaluation process where it checks if the event satisfies any of

the pre-defined rules set by the growth campaigns.

All processed events are stored in Redis (for 24 hours) and events that trigger an action

are persisted in MySQL as well.

If an action is triggered, Trident will then call the backend service associated with that

action. These calls are rate-limited (with tighter limits during peak hours) so that

Trident doesn’t accidently DoS attack any of Grab’s downstream backend services.

Scalability

The number of events that Trident has to process can vary widely based on the time of

day, day of week and time of year. During the peak of 2020, Trident was processing

more than 2,000 events per second.

Grab uses quite a few strategies to make sure Trident can scale properly. The strategies

are illustrated in this diagram.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

It boils down to two things: scaling the server level and scaling the data store level.

Scaling the Server Level

The source of events for Trident are Kafka streams. Upstream backend services that are

handling delivery/taxi orders will publish events to these streams after they handle a

user’s request.

Trident can handle increased load (more events coming down the Kafka streams) by

● Auto-scaling horizontally - Grab can add more server instances to handle

Trident’s workload. However, they have to be careful and make sure that load

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

is being distributed evenly across the server instances by matching kafka

partitions with the server auto-scaling.

● Reducing Load - The majority of the processing that the Trident servers are

doing is checking to see if the event matches the criteria for any of the

campaigns and whether any actions are triggered.Grab engineers sped this

process up by prefiltering events. They load active campaigns every few

minutes and organize them into an in-memory hashmap with the event type

as the key and the list of corresponding campaigns as the value.When

processing an event, they can quickly figure out all the possible matching

campaigns by first checking in the hash map.

If any actions are triggered, Trident will call downstream backend services to handle

them. For example, the GrabRewards service could be called to give a user a free ride.

There are strict rate-limits built in to stop Trident from overwhelming these

downstream services during a time of high load.

Scaling the Data Store Level

Trident uses two types of storage: cache storage (Redis) and persistent storage (MySQL

and S3).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Scaling cache storage isn’t too complicated since Redis Cluster makes it pretty simple.

Engineers can add new shards at any time to spread out the load and data replication

prevents any data loss from shard failures.

In terms of persistent storage, Trident has two types of data in terms of access pattern:

online data and offline data.

The online data is frequently accessed (so it has to be relatively quick) and medium size

(a couple of terabytes). Grab uses MySQL for this data.

The offline data is infrequently accessed but very large in size (hundreds of terabytes

generated per day). Grab uses AWS S3 for this.

For the MySQL database, Grab added read replicas that can handle some of the load

from the read queries. This relieved more than 30% of the load from the master instance

and allows MySQL queries to be performant.

In the future, they plan to vertically partition (split the database up by tables) the single

MySQL database into multiple databases based on table usage.

For more details, read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSkpFSURJRUV4SUZJeUl3RXlKR0pFSUxJR0lISXhKR0V3SkVJSElESXZFd0pHSUxJd0lIRXdJSEpJSUhJeEpHRXdKQ0pFSXlJRklISkZKRklMSXhJSkV3SURKR0V3SkZJRklESXZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkdGR0ZLRkZGSklHRkdJSEV3SUlJSElERkRFd0ZHRkZJRUZFRXdJRUZJRkVGSkV3SUZGR0ZJRkhJRUZKRktGRUZFRkVJR0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Lessons Learned from Implementing Payments in

the DoorDash Android App

Harsh Alkutkar is a software engineer on DoorDash’s ordering experience team. He

wrote a great blog post on Eight Things We Learned from Implementing Payments in

the DoorDash Android App

Summary

How mobile payments are typically implemented

When a user is making an online order, they will submit their credit card information to

a payment gateway such as Stripe or PayPal. The gateway encrypts this information and

facilitates the transaction with payment processors.

The payment processor will talk to the issuing bank (for the user’s credit card) and

request approval.

The approval will then bubble to the backend, which lets the client know if the payment

was accepted/declined.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SXlKRUlHSURKRklLRXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlGRUZDRkVGREV5RkRGQ0V5RkNGSEV5SUhJTElKSUtKR0V3SkdJS0lMSXhJSkpGRXdKSklIRXdJdklISURKRUl4SUhJR0V3SUlKRUl5SXdFd0lMSXdKQ0l2SUhJd0lISXhKR0lMSXhJSkV3SkNJREpMSXdJSEl4SkdKRkV3SUxJeEV3SkdJS0lIRXdJR0l5SXlKRUlHSURKRklLRXdJREl4SUdKRUl5SUxJR0V3SURKQ0pDRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZISUZGR0ZDRkVJSUlJRkpFd0ZFSUdJSEZKRXdGR0lGSUZJRkV3RktJRUZERklFd0ZFSUdGS0ZLSURJR0ZJRktJSUZFRkRJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Mobile payments can become very complex for the following reasons

● Multiple Payment Methods - In order to boost conversion rates, you want to

offer as many payment methods as possible to the user. Each method requires

its own integration into the app and requires its own custom testing strategy.

● User experience - The UI needs to work with all payment methods and also

for new and existing users. This creates quite a few scenarios that have to be

implemented and tested.

● Testing - Testing cannot be an afterthought. The backend has to be designed

in a way that allows every payment method and flow to be tested before a

release.

● Fraud - Anti-fraud measures need to be implemented in any app that includes

a mobile payment component.

● Location - you need to account for the user’s location before processing their

payment to comply with each country’s laws and regulations

Here’s a couple of the lessons DoorDash engineers learned while implementing

payments in the DoorDash Android app.

Plan and design for future payment methods

In an earlier version of the DoorDash app, the developers didn’t properly account for the

addition of new payment methods to the app. Instead, it was designed around credit

cards and Google Pay. This led to challenges when adding new methods like PayPal.

In the new design, engineers introduced the notion of payment methods into the

codebase. These are categorized into local payment methods that are part of the device

(like Google Pay) and external payment methods that require interactions with a

payment gateway (like Stripe).

Beware of restrictions and implementation guidelines specific to payment methods

Payment vendors may have specific ways they want to be portrayed in an app.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

For example, Google Pay requires that it be the primary payment option wherever

possible.

Additionally, they have strict UX guidelines that explain how to display their logos and

buttons.

Plan for consumers in different countries or traveling consumers

Payments usually can’t be implemented in a generic way that scales worldwide. Each

country has its own technical, legal and accounting implications.

Some payment methods may also need extra verification or information in other

countries.

Plan for performance

It’s absolutely critical to keep an app performant while it processes payments. Caching

the payment methods and cards makes it faster because there’s less waiting for payment

information on the cart and checkout screens.

However, this has to be done with care and must account for error cases where the

backend and device are out of sync.

Add lots of telemetry

Payment flows can be tricky to debug if they don’t work properly. Therefore, instead of

just sending generic information like “payment failed”, the system should send as much

information as possible; including things like error codes from providers, device

information or any diagnostics that can help to identify the state of the app when it

failed.

However, be careful not to include any personal identifiable information or any payment

information that could be compromised by an attacker.

For more details on each of these points, read the full blog post here

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVKRkV4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUpDSURKTEV5SURKQ0lMRXlJREl4SUdKRUl5SUxJR0V5SUpKSElMSUdJSEpGRXlJRUpFSURJeElHRXdJSkpISUxJR0lISXZJTEl4SUhKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkhJRkZHRkNGRUlJSUlGSkV3RkVJR0lIRkpFd0ZHSUZJRklGRXdGS0lFRkRGSUV3RkVJR0ZLRktJRElHRklGS0lJRkVGRElIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVKRkV4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUpDSURKTEV5SURKQ0lMRXlJREl4SUdKRUl5SUxJR0V5SUpKSElMSUdJSEpGRXlJRUpFSURJeElHRXdJSkpISUxJR0lISXZJTEl4SUhKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkhJRkZHRkNGRUlJSUlGSkV3RkVJR0lIRkpFd0ZHSUZJRklGRXdGS0lFRkRGSUV3RkVJR0ZLRktJRElHRklGS0lJRkVGRElIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SXlKRUlHSURKRklLRXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlGRUZDRkVGREV5RkRGQ0V5RkNGSEV5SUhJTElKSUtKR0V3SkdJS0lMSXhJSkpGRXdKSklIRXdJdklISURKRUl4SUhJR0V3SUlKRUl5SXdFd0lMSXdKQ0l2SUhJd0lISXhKR0lMSXhJSkV3SkNJREpMSXdJSEl4SkdKRkV3SUxJeEV3SkdJS0lIRXdJR0l5SXlKRUlHSURKRklLRXdJREl4SUdKRUl5SUxJR0V3SURKQ0pDRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZISUZGR0ZDRkVJSUlJRkpFd0ZFSUdJSEZKRXdGR0lGSUZJRkV3RktJRUZERklFd0ZFSUdGS0ZLSURJR0ZJRktJSUZFRkRJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Why DoorDash migrated from Python to Kotlin

DoorDash is the largest food delivery app in the United States with more than 450

thousand restaurants, 20 million customers and 1 million deliverers.

Matt Anger is a Senior Staff Engineer at DoorDash where he works on the Core Platform

and Performance teams.

He published a great blog post (May 2021) on DoorDash’s migration from Python 2 to

Kotlin. Here’s a summary.

Summary

DoorDash was quickly approaching the limits of what their Django-based monolithic

codebase could support.

With their legacy system, the number of nodes that needed to be updated added

significant time to releases. Debugging bad deploys with bisection got harder and longer

due to the number of commits each deploy had. The monolith was built with Python 2

which was also rapidly entering end-of-life.

Engineers at DoorDash decided to transition from the monolith to a microservices

architecture. They also looked for a new tech stack to replace Python 2 and Django.

One of their goals was to only use one language for the backend.

Having one language would let them

● Promote Best Practices - Having one language makes it easier for teams to

share development best practices across the entire company.

● Build Common Libraries - All engineers can share common libraries and

tooling.

● Change Teams - Engineers can change teams with minimal friction, which

encourages more collaboration.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SXlKRUlHSURKRklLRXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlGRUZDRkVGREV5RkNGSEV5RkNGR0V5SXdJTElKSkVJREpHSUxJeElKRXdJSUpFSXlJd0V3SkNKTEpHSUtJeUl4RXdKR0l5RXdJdUl5SkdJdklMSXhFd0lJSXlKRUV3SXlKSEpFRXdJRUlESUZJdUlISXhJR0V3SkZJSEpFSklJTElGSUhKRkV5RUZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGSEZFSUhGR0ZMRklFd0ZERkZJSUlIRXdGR0ZHSURGSUV3RkxGRkZLSUVFd0ZGRkZJRUlGRkVGS0lHRkpGSUlFSURJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdFSUxKRklISUZKR0lMSXlJeEh5RUtKRkl5SUlKR0pKSURKRUlISHlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGSEZFSUhGR0ZMRklFd0ZERkZJSUlIRXdGR0ZHSURGSUV3RkxGRkZLSUVFd0ZGRkZJRUlGRkVGS0lHRkpGSUlFSURJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Picking the Right Coding Language

First, DoorDash engineers looked at the parts of their tech stack that would not change.

They had a lot of experience with Postgres and Apache Cassandra, so they would

continue to use those technologies as data stores.

They would use gRPC for synchronous service-to-service communication, with Apache

Kafka as a message queue.

In terms of the programming language, the choices in contention were Kotlin, Java, Go,

Rust and Python 3.

Here’s the comparison they did…

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

After doing the comparison, they went with Kotlin. They had already done some testing

around the language and it worked well.

Kotlin mitigated some of the pain points around Java like Null Safety and Coroutines.

Some of the growing pains they faced with Kotlin were

● Educating DoorDash engineers on the language - Much of the online

community around Kotlin is specific to Android dev, and there isn’t as much

content on backend engineering.To help engineers learn the language, they

regularly held Lunch and Learn sessions and set up a slack channel for

questions.

● Avoiding coroutine gotchas - DoorDash used gRPC for service-to-service

communication however gRPC Kotlin wasn’t available when they first made

the switch. They used gRPC-Java, which lacked support for coroutines.gRPC

Kotlin is now generally available so they made the migration to that.There are

several other gotchas around coroutines that are discussed in the article.

● Getting around Java interoperability pain points - There were some pain

points with Java interop. Many libraries claiming to implement modern Java

Non-blocking I/O standards did so in an unscalable manner. This caused

issues when using coroutines. Check the article for full details.

● Making dependency management easier - The build system and dependency

management are a lot less intuitive than more recent solutions like Rust’s

Cargo or Go’s modules. Some dependencies are particularly sensitive to

version upgrades and can lead to issues where compilation succeeds but the

app fails on boot up with odd, seemingly irrelevant back traces.DoorDash

engineers learned which projects tend to cause these issues most often and

have guidelines for how to catch and bypass them.

For more details, read the full article

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJdUl5SkdJdklMSXhJdklESXhJSkV4SXlKRUlKRXlJR0l5SUZKRkV5SXhKSEl2SXZFd0pGSURJSUlISkdKTEV4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGSEZFSUhGR0ZMRklFd0ZERkZJSUlIRXdGR0ZHSURGSUV3RkxGRkZLSUVFd0ZGRkZJRUlGRkVGS0lHRkpGSUlFSURJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJdUl5SkdJdklMSXhJdklESXhJSkV4SXlKRUlKRXlJR0l5SUZKRkV5SUZJeUpFSXlKSEpHSUxJeElISkZFd0l5SklJSEpFSklJTElISkpFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZKRkhGRUlIRkdGTEZJRXdGREZGSUlJSEV3RkdGR0lERklFd0ZMRkZGS0lFRXdGRkZGSUVJRkZFRktJR0ZKRklJRUlESURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SXlJeEV3SUVJdkl5SUZJdUlMSXhJSkh5R0xFeUd5SHlFS0d0SURKSUlERUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGSEZFSUhGR0ZMRklFd0ZERkZJSUlIRXdGR0ZHSURGSUV3RkxGRkZLSUVFd0ZGRkZJRUlGRkVGS0lHRkpGSUlFSURJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SXlJeEV3SUVJdkl5SUZJdUlMSXhJSkh5R0xFeUd5SHlFS0d0SURKSUlERUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkpGSEZFSUhGR0ZMRklFd0ZERkZJSUlIRXdGR0ZHSURGSUV3RkxGRkZLSUVFd0ZGRkZJRUlGRkVGS0lHRkpGSUlFSURJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SXlKRUlHSURKRklLRXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlGRUZDRkVGREV5RkNGSEV5RkNGR0V5SXdJTElKSkVJREpHSUxJeElKRXdJSUpFSXlJd0V3SkNKTEpHSUtJeUl4RXdKR0l5RXdJdUl5SkdJdklMSXhFd0lJSXlKRUV3SXlKSEpFRXdJRUlESUZJdUlISXhJR0V3SkZJSEpFSklJTElGSUhKRkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZKRkhGRUlIRkdGTEZJRXdGREZGSUlJSEV3RkdGR0lERklFd0ZMRkZGS0lFRXdGRkZGSUVJRkZFRktJR0ZKRklJRUlESURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Clock Synchronization and NTP

When you’re talking about measuring time, the gold standard is an atomic clock. Atomic

clocks have an error of ~1 second in a span of 100 million years.

However, atomic clocks are way too expensive and bulky to put in every computer.

Instead, individual computers contain quartz clocks which are far less accurate.

The clock drift differs on the hardware, but it’s an error of ~10 seconds per month.

When you’re dealing with a distributed system with multiple machines, it’s very

important that you have some degree of clock synchronization. Having machines that

are dozens of seconds apart on time makes it impossible to coordinate.

Clock skew is a measure that tells you the difference between two clocks on different

machines at a certain point of time.

You can never reduce clock skew to 0, but you want to reduce clock skew as much as

possible through the synchronization process.

The way clock synchronization is done is with a protocol called NTP, Network Time

Protocol.

NTP works by having servers that maintain accurate measures of the time. Clients can

query those servers and ask for the current time.

The client will take those answers, discard any outliers, and average the rest. It’ll use a

variety of statistical techniques to get the most accurate time possible.

This is a great blog post that delves into the clock synchronization algorithm.

Here’s a list of NTP servers that you can query for the current time. It’s likely that your

personal computer uses NTP to contact a time server and adjust its own personal clock.

My personal computer uses time.apple.com as its NTP time server.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXZJeUlGSXVIeUlHSkVJTElJSkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkpGSUlESURJRUZFRkpFd0ZFSUhJRklERXdGR0ZGSUlJRkV3RktGRklISURFd0lIRktGSElISUZGTElESUVGSUZJRkNJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SUhKR0pKSXlKRUl1SHlIR0lMSXdJSEh5SENKRUl5SkdJeUlGSXlJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGSkZJSURJRElFRkVGSkV3RkVJSElGSURFd0ZHRkZJSUlGRXdGS0ZGSUhJREV3SUhGS0ZISUhJRkZMSURJRUZJRklGQ0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SUhKR0pKSXlKRUl1SHlIR0lMSXdJSEh5SENKRUl5SkdJeUlGSXlJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGSkZJSURJRElFRkVGSkV3RkVJSElGSURFd0ZHRkZJSUlGRXdGS0ZGSUhJREV3SUhGS0ZISUhJRkZMSURJRUZJRklGQ0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkl5SXlJdUl5SUZJS0lISUlJSUV4SUZJeUl3RXlKQ0l5SkZKR0V5SkdJTEl3SUhFeUlLSXlKSkV3SUdJeUlISkZFd0l4SkdKQ0V3SkpJeUpFSXVFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGSkZJSURJRElFRkVGSkV3RkVJSElGSURFd0ZHRkZJSUlGRXdGS0ZGSUhJREV3SUhGS0ZISUhJRkZMSURJRUZJRklGQ0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl4SkdKQ0pDSXlJeUl2RXhJeUpFSUpFeUlISXhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGSkZJSURJRElFRkVGSkV3RkVJSElGSURFd0ZHRkZJSUlGRXdGS0ZGSUhJREV3SUhGS0ZISUhJRkZMSURJRUZJRklGQ0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

It’s not possible for every computer in the world to directly query an atomic clock since

there aren’t enough atomic clocks to satisfy that demand.

Therefore, there are some NTP servers in between your computer and the reference

clock.

NTP arranges these servers into strata

● Stratum 0 - atomic clock

● Stratum 1 - synced directly with a stratum 0 device

● Stratum 2 - servers that sync with stratum 1 devices

● Stratum 3 - servers that sync with stratum 2 devices

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

And so on until stratum 15. Stratum 16 is used to indicate that a device is

unsynchronized.

A computer may query multiple NTP servers, discard any outliers (in case of faults with

the servers) and then average the rest.

Computers may also query the same NTP server multiple times over the course of a few

minutes and then use statistics to reduce random error due to variations in network

latency.

For connections through the public internet, NTP can usually maintain time to within

tens of milliseconds (a millisecond is one thousandth of a second).

To learn more about NTP, watch the full lecture by Martin Kleppmann.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKTEl5SkhKR0pIRXhJRUlIRXlJd0dESkxISkV3RkdHdklISEtIdEl5RnlJdklMSkZKR0Z3SENHdklIR3VJR0ZHRkhKdEpJSXRJRkdHR0lISEdISklIeUl5SUtKRUh5R0tJR0hIR0lJSEZMRkpIRUdMSkdJR0lMR0VFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkpGSUlESURJRUZFRkpFd0ZFSUhJRklERXdGR0ZGSUlJRkV3RktGRklISURFd0lIRktGSElISUZGTElESUVGSUZJRkNJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Building Faster Indexing with Apache Kafka and

Elasticsearch

DoorDash is the largest food delivery app in the United States with more than 20

million consumers and 450 thousand restaurants.

A critical part of the DoorDash app is the search function. You can search for Scallion

Pancakes and the DoorDash app will give you restaurants near you that are open and

currently serving that dish.

Solving this problem at scale is quite challenging, as restaurants are constantly changing

their menus, store hours, locations, etc.

You need to quickly index all of the store data to provide a great restaurant discovery

feature.

Satish, Danial, and Siddharth are software engineers on DoorDash’s Search Platform

team, and they wrote a great blog post about how they built a faster indexing system

with Apache Kafka, Apache Flink and Elasticsearch.

Here’s a summary

DoorDash’s Problem with Search Indexing

DoorDash’s legacy indexing system was very slow, unreliable and not extensible. It took

a long time for changes in store and item descriptions to be reflected in the search index.

It was also very difficult to assess the indexing quality.

There were frequent complaints about mismatches in store details between the search

index and the source of truth. These had to be fixed manually.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SXlKRUlHSURKRklLRXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlGRUZDRkVGREV5RkNGSkV5RkRGR0V5SXlKQ0lISXhFd0pGSXlKSEpFSUZJSEV3SkZJSElESkVJRklLRXdJTEl4SUdJSEpLSUxJeElKRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkpGSUlESURJRUZFRkpFd0ZFSUhJRklERXdGR0ZGSUlJRkV3RktGRklISURFd0lIRktGSElISUZGTElESUVGSUZJRkNJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

The New System

Engineers solved these problems by building a new search indexing platform with the

goals of providing fast and reliable indexing while also improving search performance.

The new platform is built on a data pipeline that uses Apache Kafka as a message queue,

Apache Flink for data transformation and Elasticsearch as the search engine.

The components of the architecture are

● Data sources - These are the sources of truth for the data. When CRUD

operations take place on the data (changing store menu, updating store hours,

etc.) then they are reflected here. DoorDash uses Postgres as the database and

Snowflake as the data warehouse.

● Data destination - DoorDash is using Elasticsearch here as the final data

destination. It will serve as the data store and search engine.

● Flink application - There are two custom Apache Flink applications in this

pipeline: Assembler and ES Sink. Assembler is responsible for assembling all

the data required in an Elasticsearch document. ES Sink is responsible for

shaping the documents as per the schema and writing the data to the targeted

Elasticsearch cluster.

● Message queue - Kafka 1 and Kafka 2 are the message queue components.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSkVJSElESkdJSEV2SHlKRUlISURJR0V2SHlKSEpDSUdJREpHSUhIeUlESXhJR0h5SUdJSEl2SUhKR0lIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZKRklJRElESUVGRUZKRXdGRUlISUZJREV3RkdGRklJSUZFd0ZLRkZJSElERXdJSEZLRkhJSElGRkxJRElFRklGSUZDSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSXlKRkpHSUpKRUlISEZIREd2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZKRklJRElESUVGRUZKRXdGRUlISUZJREV3RkdGRklJSUZFd0ZLRkZJSElERXdJSEZLRkhJSElGRkxJRElFRklGSUZDSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSXhJeUpKSUlJdklESXVJSEh5R0xJeElGRXhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkpGSUlESURJRUZFRkpFd0ZFSUhJRklERXdGR0ZGSUlJRkV3RktGRklISURFd0lIRktGSElISUZGTElESUVGSUZJRkNJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdISXZJREpGSkdJTElGSkZJSElESkVJRklLRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZKRklJRElESUVGRUZKRXdGRUlISUZJREV3RkdGRklJSUZFd0ZLRkZJSElERXdJSEZLRkhJSElGRkxJRElFRklGSUZDSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

This data pipeline allows for fast, incremental changes to the search index when there

are changes to the restaurant data.

The changes in data sources are propagated to Flink applications using Kafka. The Flink

apps implement business logic to curate the search documents and then write them to

Elasticsearch.

Incremental Indexing

The indexing pipeline processes two main types of data changes.

The first type of data change is when human operators make ad hoc changes to stores or

restaurant items. An example of a possible data change is a restaurant owner adding a

new dish to her menu.

The second type of data change is ETL data changes that are generated from machine

learning models. Things like restaurant ratings/scores or auto-generated tags are

generated by machine learning models and then stored in a data warehouse.

Both of these changes need to be reflected in the search index for the best customer

experience.

Here’s how DoorDash does it.

Indexing Human Operator Changes

Restaurant owners will frequently update their menus and store information. These

changes need to be reflected onto the search experience as quickly as possible.

The updates are saved in data stores like Postgres.

To keep track of these updates, DoorDash search engineers rely on Change Data Capture

(CDC) events.

DoorDash engineers implemented save hooks in the application to propagate change

events to Kafka whenever there is a change on the underlying data store.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdISktKR0pFSURJRkpHRXZIeUpHSkVJREl4SkZJSUl5SkVJd0V2SHlJdkl5SURJR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGSkZJSURJRElFRkVGSkV3RkVJSElGSURFd0ZHRkZJSUlGRXdGS0ZGSUhJREV3SUhGS0ZISUhJRkZMSURJRUZJRklGQ0lERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSUtJREl4SUpJSEh5SUdJREpHSURIeUlGSURKQ0pHSkhKRUlIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZKRklJRElESUVGRUZKRXdGRUlISUZJREV3RkdGRklJSUZFd0ZLRkZJSElERXdJSEZLRkhJSElGRkxJRElFRklGSUZDSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSUtJREl4SUpJSEh5SUdJREpHSURIeUlGSURKQ0pHSkhKRUlIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZKRklJRElESUVGRUZKRXdGRUlISUZJREV3RkdGRklJSUZFd0ZLRkZJSElERXdJSEZLRkhJSElGRkxJRElFRklGSUZDSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

After receiving the Kafka events, the Assembler app will make backend calls to gather

more information about the change and to create an event which it pushes to Kafka for

the ES Sink app to consume.

They tested other solutions like Debezium connector, a Red Hat-developed open source

project for capturing row-level changes with Postgres but they found that this strategy

had too much overhead and was not performant.

Indexing ETL data

Many properties that are used in the search index are generated by ML models. Things

like restaurant scores, auto-generated tags, etc.

These properties are updated in bulk, once a day. The data gets populated into tabs in

DoorDash’s data warehouse after a nightly run of the respective ETL jobs.

The CDC patterns described for Human Operator Changes don’t work here because you

don’t constantly have changes/updates through the day. Instead, you have one bulk

update that happens once a day.

Using the CDC pattern described above would overwhelm the system when making the

bulk update due to the size of the update.

Therefore, DoorDash engineers built a custom Flink source function which spreads out

the ETL ingestion over a 24 hour interval so that the systems don’t get overwhelmed.

The Flink source function will periodically stream rows from an ETL table to Kafka in

batches, where the batch size is chosen to ensure that the downstream systems do not

get overwhelmed.

Sending documents to Elasticsearch

Once the Assembler application publishes data to Kafka, the consumer (ES Sink) will

read those messages, transform them according to the specific index schema, and then

send them to their appropriate index in Elasticsearch.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISUVJSEp0SUxKSEl3RXhJTEl5RXlJR0l5SUZKSEl3SUhJeEpHSURKR0lMSXlJeEV5SkVJSElJSUhKRUlISXhJRklIRXlGREV4RkZFeUlGSXlJeEl4SUhJRkpHSXlKRUpGRXlKQ0l5SkZKR0lKSkVJSEpGSkRJdkV4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkpGSUlESURJRUZFRkpFd0ZFSUhJRklERXdGR0ZGSUlJRkV3RktGRklISURFd0lIRktGSElISUZGTElESUVGSUZJRkNJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

ES Sink utilizes Flink Elasticsearch Connector to write JSON documents to

Elasticsearch.

It has rate limiting and throttling capabilities out of the box, which are essential for

protecting Elasticsearch clusters when the system is under heavy write load.

Results

With the new search indexing platform, updates happen much faster. The time needed

to reindex existing stores and items on the platform fell from 1 week to 2 hours.

The reliance on open source tools for the index means a lot of accessible documentation

online and engineers with this expertise who can join the DoorDash team in the future.

For information on how DoorDash backfilled the search index (and more!), read the full

blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SXlKRUlHSURKRklLRXhJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlGRUZDRkVGREV5RkNGSkV5RkRGR0V5SXlKQ0lISXhFd0pGSXlKSEpFSUZJSEV3SkZJSElESkVJRklLRXdJTEl4SUdJSEpLSUxJeElKRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkpGSUlESURJRUZFRkpFd0ZFSUhJRklERXdGR0ZGSUlJRkV3RktGRklISURFd0lIRktGSElISUZGTElESUVGSUZJRkNJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

The Architecture of Databases

Alex Petrov is a software engineer at Apple. He wrote an amazing book on Database

Internals, where he does a deep dive on how distributed data systems work. I’d highly

recommend you pick up a copy if you want to learn more on the topic.

We’ll be summarizing a small snippet from his book on the architecture behind

Database Management Systems (DBMSs).

Summary

You’ve probably used a DBMS like Postgres, MySQL, etc.

They provide an extremely useful abstraction that you can use in your applications for

storing and (later) retrieving data.

All DBMSs provide an API that you can use through some type of Query Language to

store and retrieve data.

They also provide a set of guarantees around how this data is stored/retrieved. A couple

examples of such guarantees are

● Durability - guarantees that you won’t lose any data if the DBMS crashes

● Consistency - After you write data, will all subsequent reads always give the

most recent value of the data? (this is important for distributed databases)

● Read/Write Speeds - IOPS is the standard measure of input and output

operations per second on storage devices.

The architecture of the various Database Management Systems vary widely based on

their guarantees and design goals. A database designed for OLTP use will be designed

differently than a database meant for OLAP.

An in-memory DBMS (designed to store data primarily in memory and use disk for

recovery and logging) will also be designed differently than a disk-based DBMS

(designed to primarily store data on disk and use memory for caching).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdMR3lIQ0hGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSElFSUlJRkZLRkZJRElIRXdGQ0ZKSUVJRkV3RkdGRUZERkxFd0ZLRkdJRElFRXdGRkZHSURJR0lERklGQ0ZHSUhJRUZIRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd5SXhJdklMSXhJSEh5SkdKRUlESXhKRklESUZKR0lMSXlJeEh5SkNKRUl5SUZJSEpGSkZJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlISUVJSUlGRktGRklESUhFd0ZDRkpJRUlGRXdGR0ZFRkRGTEV3RktGR0lESUVFd0ZGRkdJRElHSURGSUZDRkdJSElFRkhGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd5SXhJdklMSXhJSEh5SURJeElESXZKTEpHSUxJRklESXZIeUpDSkVJeUlGSUhKRkpGSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSElFSUlJRkZLRkZJRElIRXdGQ0ZKSUVJRkV3RkdGRUZERkxFd0ZLRkdJRElFRXdGRkZHSURJR0lERklGQ0ZHSUhJRUZIRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

However, databases have some common themes in their various architectures and

knowing these themes can provide a useful model for how they work.

The general architecture can be described by this diagram.

Database Management Systems use a client/server model. Your application is the client

and the DBMS is the server (either hosted on the same machine or on a different

machine).

The Transport system is how the DBMS accepts client requests.

Client requests come in the form of a database query and are usually expressed in some

type of a query language (ex. SQL).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

After receiving the query, the Transport system will pass the query on to the Query

Processor.

The Query Processor will first parse the query (using an Abstract Syntax Tree for ex.)

and make sure it is valid.

Checking for validity means making sure that the query makes sense (all the commands

are recognized, the data accessed is valid, etc.) and also that the client is correctly

permissioned to access/modify the data that they’re requesting.

If the query isn’t valid, then the database will return an error to the client.

Otherwise, the parsed query is passed to the Query Optimizer.

The optimizer will first eliminate redundant parts of the query and then use internal

database statistics (index cardinality, approximate intersection size, etc.) to find the

most efficient way to execute the query.

For distributed databases, the optimizer will also consider data placement like which

node in the cluster holds the data and the costs associated with the transfer.

The output from the Optimizer is an Execution Plan that describes the optimal method

of executing the query. This plan is also called the Query Plan or Query Execution Plan.

This execution plan gets passed on to the Execution Engine which carries out the plan.

When you’re using a distributed database, the execution plan can involve remote

execution (making network requests for data that is stored on a different machine).

Otherwise, it’s just local execution (carrying out queries for data that is stored locally).

Remote execution involves Cluster Communication, where the DBMS communicates

with other machines in the database cluster and sends them requests for data. As you

can see in the diagram above, that’s part of the Transport layer.

Local execution involves talking to the Storage Engine to get the data.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhESkhJSEpFSkxIeUl5SkNKR0lMSXdJTEp0SURKR0lMSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhJRUlJSUZGS0ZGSURJSEV3RkNGSklFSUZFd0ZHRkVGREZMRXdGS0ZHSURJRUV3RkZGR0lESUdJREZJRkNGR0lISUVGSEZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhESkhJSEpFSkxIeUpDSXZJREl4RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSElFSUlJRkZLRkZJRElIRXdGQ0ZKSUVJRkV3RkdGRUZERkxFd0ZLRkdJRElFRXdGRkZHSURJR0lERklGQ0ZHSUhJRUZIRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The Storage Engine is the component in the database that is directly responsible for

storing, retrieving and managing data in memory and on disk.

Storage Engines typically provide a simple data manipulation API (allowing for CRUD

features) and contain all the logic for the actual details of how to manipulate the data.

Examples of Storage Engines include BerkeleyDB, LevelDB, RocksDB, etc.

Databases will often allow you to pick the Storage Engine that’s being used.

MySQL, for example, has several choices for the storage engine, including RocksDB and

InnoDB.

The Storage Engine consists of several components

Transaction Manager - responsible for creating transaction objects and managing their

atomicity (either the entire transaction succeeds or it is rolled back).

Lock Manager - Transactions will be executing concurrently, so the Lock Manager

manages the locks on database objects being accessed by each transaction (and releasing

those locks when the transaction either commits or rolls back).

Access Methods - These manage access, compression and organizing data on disk.

Access methods include heap files and storage structures such as B-trees.

Buffer Manager - This manager caches data pages in RAM to reduce the number of

accesses to disk.

Recovery Manager - Maintains the operation log and restoring the system state in case

of a failure.

Different Storage Engines make different tradeoffs between these components resulting

in differing performance for things like compression, scaling, partitioning, speed, etc.

For more, be sure to check out Database Internals by Alex Petrov.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkpGRXhJeUpFSURJRkl2SUhFeElGSXlJd0V5SUVJSEpFSXVJSEl2SUhKTElHSUVFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhJRUlJSUZGS0ZGSURJSEV3RkNGSklFSUZFd0ZHRkVGREZMRXdGS0ZHSURJRUV3RkZGR0lESUdJREZJRkNGR0lISUVGSEZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SUpJeUl5SUpJdklIRXlJdklISklJSEl2SUdJRUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhJRUlJSUZGS0ZGSURJSEV3RkNGSklFSUZFd0ZHRkVGREZMRXdGS0ZHSURJRUV3RkZGR0lESUdJREZJRkNGR0lISUVGSEZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SUlJRElGSUhJRUl5SXlJdUV5SkVJeUlGSXVKRklHSUVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlISUVJSUlGRktGRklESUhFd0ZDRkpJRUlGRXdGR0ZFRkRGTEV3RktGR0lESUVFd0ZGRkdJRElHSURGSUZDRkdJSElFRkhGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Observability at Twitter

Previously, Twitter used a home-grown logging system called Loglens. Engineers had

quite a bit of trouble with Loglens, mainly around it’s low ingestion capacity and limited

query capabilities.

To fix this, Twitter adopted Splunk for their logging system. After the switch, they’ve

been able to ingest 4-5 times more logging data with faster queries.

Kristopher Kirland is a senior Site Reliability Engineer at Twitter and he wrote a great

blog post on this migration and some of the challenges involved (published August

2021).

Here’s a summary

The Legacy Logging System

Before Loglens (the legacy centralized logging system), Twitter engineers had great

difficulty with browsing through the different log files from their various backend

services. This would be super frustrating when engineers were investigating an ongoing

incident.

To solve this, they designed Loglens as a centralized logging platform that would ingest

logs from all the various services that made up Twitter.

Their goals for this platform were

● Ease of onboarding

● Low cost

● Little time investment from developers for ongoing maintenance and

improvements

Log files would be written to local Scribe daemons, forwarded onto Kafka and then

ingested into the Loglens indexing system and written to HDFS.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SkdKSklMSkdKR0lISkVFeElGSXlJd0V5SUhJeElKSUxJeElISUhKRUlMSXhJSkV5SUhJeEh5SkhKRkV5SkdJeUpDSUxJRkpGRXlJTEl4SUlKRUlESkZKR0pFSkhJRkpHSkhKRUlIRXlGRUZDRkVGREV5SXZJeUlKSUpJTEl4SUpFd0lESkdFd0pHSkpJTEpHSkdJSEpFRXdKSEpDSUdJREpHSUhJR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRUZESUVGS0ZKSUlGTEV3RktGSkZIRkpFd0ZHSUZGSEZIRXdJRUZFSURGSEV3RkdGSElJRkRGS0lGRkpGRklFRklJRkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSUlFRXhJRkl5SXdFeUZFRkNGREZMRXlGREZDRXlGQ0ZKRXlJR0lESkdJREV3SUxJeElJSkVJREpGSkdKRUpISUZKR0pISkVJSEV5SkZJRkpFSUxJRUlIRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkVGRElFRktGSklJRkxFd0ZLRkpGSEZKRXdGR0lGRkhGSEV3SUVGRUlERkhFd0ZHRkhJSUZERktJRkZKRkZJRUZJSUZGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0tJRElHSXlJeUpDRUZHS0lESUdJeUl5SkNIeUlHSUxKRkpHSkVJTElFSkhKR0lISUdIeUlJSUxJdklISHlKRkpMSkZKR0lISXdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkVGRElFRktGSklJRkxFd0ZLRkpGSEZKRXdGR0lGRkhGSEV3SUVGRUlERkhFd0ZHRkhJSUZERktJRkZKRkZJRUZJSUZGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

While running Loglens as their logging backend, the platform ingested around 600k

events per second per datacenter.

However, only 10% of the logs ingested were actually submitted. The other 90% were

discarded by the rate limiter to avoid overwhelming Loglens.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The logging system had very little resource investment (little investment was one of the

goals) and that led to a poor developer experience with the platform.

Transitioning to Splunk

Twitter engineers decided to switch to Splunk for their centralized logging platform.

They chose Splunk because it could scale to their needs; ingesting logs from hundreds of

thousands of servers in the Twitter fleet. Splunk also offers flexible tooling that satisfies

the majority of Twitter’s log analysis needs.

Due to the loosely coupled design of Loglens, migrating to Splunk was pretty

straightforward.

Twitter engineers created a new service to subscribe to the Kafka topic that was already

in use for Loglens, and then they forwarded those logs to Splunk. The new service is

called the Application Log Forwarder (ALF).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Twitter uses this set up for the majority of their logs (over 85%) but they also use the

Splunk Universal Forwarder. With the Universal Forwarder, they just install that

application on each server in their fleet and it starts ingesting logs.

With Splunk, Twitter now has a much greater ingestion capacity compared to Loglens.

As of August 2021, they collect nearly 42 terabytes of data per datacenter each day.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

That’s 5 million events per second per datacenter, which is far greater than what Twitter

was able to do with Loglens.

They also gained some other features like greater configurability, the ability to save and

schedule searches, complex alerting, a more robust and flexible query language, and

more.

Challenges of running Splunk

Some of the challenges that Twitter engineers faced with the migration were

● Control of flow of data is limited - As stated previously, Twitter uses the

Application Log Forwarder (ALF) for 85% of their logging and the Splunk

Universal Forwarder for 15% of logging.If something goes wrong with a

service and they start to flood the system with enough logging events to

threaten the stability of the Splunk Enterprise Clusters, the ALF can rate limit

by log priority or originating service.However, the Splunk Universal

Forwarder lacks the flexibility that the ALF has.

● Server maintenance in large clusters is a pain - Server maintenance, like

regular reboots, presents a significant challenge. Rebooting too many servers

at once can cause interruptions for Splunk searches and poor ingestion rates

of new logging data.

● Managing Configuration - Twitter uses the typical configuration management

tools like Puppet/Chef for the majority of needs, but they fell short of what

they wanted for managing indexes and access controls. They had to create

their own service that generated specific configuration files and deployed

them to the correct servers.

● Modular Inputs are not Resilient - One feature of Splunk is Splunkbase,

where you can find a large array of add-ons for all the various products you

might be using. Many add-ons give you the ability to collect data from the API

of third-party applications like GitHub, Slack, Jenkins, etc.However, Twitter

engineers found that most of these add-ons are not designed to run in a

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

resilient manner. Instead, they implemented their own plugins to run on their

compute infrastructure.

For more information, check out the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SkdKSklMSkdKR0lISkVFeElGSXlJd0V5SUhJeElKSUxJeElISUhKRUlMSXhJSkV5SUhJeEh5SkhKRkV5SkdJeUpDSUxJRkpGRXlJTEl4SUlKRUlESkZKR0pFSkhJRkpHSkhKRUlIRXlGRUZDRkVGREV5SXZJeUlKSUpJTEl4SUpFd0lESkdFd0pHSkpJTEpHSkdJSEpFRXdKSEpDSUdJREpHSUhJR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRUZESUVGS0ZKSUlGTEV3RktGSkZIRkpFd0ZHSUZGSEZIRXdJRUZFSURGSEV3RkdGSElJRkRGS0lGRkpGRklFRklJRkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Language Implementations Explained

Bob Nystrom is a software engineer at Google, where he works on the Dart

Programming language.

He wrote an amazing book called Crafting Interpreters, where he walks you through

how programming language implementations work. In the book, you’ll build two

interpreters, one in Java and another in C.

He published the entire book for free here, but I’d highly suggest you support the author

if you have the means to do so.

His section on A Map of the Territory gives a fantastic introduction to programming

language implementations, so here’s a summary of that section (with my own

commentary added in).

Languages vs. Language Implementations

First of all, it’s important to note that a programming language implementation is

different from a programming language.

The programming language refers to the syntax, keywords, etc. The programming

language itself is usually designed by a committee and there are some standard

documents that describe the language. These documents are usually called the

Programming Language Specification.

(Not all languages have a specification. Python, for example, has the Python Language

Reference, which is the closest thing to it’s specification.)

The language implementation is the actual software that allows you to run code from

that programming language. Typically, an implementation consists of a

compiler/interpreter.

A programming language can havemany different language implementations, and these

implementations can all be quite different from each other. The key factor is that all

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkpFSURJSUpHSUxJeElKSUxJeEpHSUhKRUpDSkVJSEpHSUhKRUpGRXhJRkl5SXdFeUlGSXlJeEpHSUhJeEpHSkZFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZIRkhGS0lIRkZJSEZERXdGS0ZLRkxGRUV3RkdJRElGRkRFd0ZLRkNGR0lJRXdGSEZIRktGS0lJRkxJREZFRkNGRUlFRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkpFSURJSUpHSUxJeElKSUxJeEpHSUhKRUpDSkVJSEpHSUhKRUpGRXhJRkl5SXdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSkVJeUlKSkVJREl3SXdJTEl4SUpIeUl2SURJeElKSkhJRElKSUhIeUpGSkNJSElGSUxJSUlMSUZJREpHSUxJeUl4RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZIRkhGS0lIRkZJSEZERXdGS0ZLRkxGRUV3RkdJRElGRkRFd0ZLRkNGR0lJRXdGSEZIRktGS0lJRkxJREZFRkNGRUlFRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SUZKRkV4SkNKTEpHSUtJeUl4RXhJeUpFSUpFeUZGRXlKRUlISUlJSEpFSUhJeElGSUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SUZKRkV4SkNKTEpHSUtJeUl4RXhJeUpFSUpFeUZGRXlKRUlISUlJSEpFSUhJeElGSUhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

these implementations must be able to run code that is defined according to the

programming language specification.

The most popular implementation for Python is CPython but there’s also PyPy (JIT

compiler), Jython (Python running on the JVM), IronPython (Python running on .NET)

andmanymore implementations.

The Architecture of a Language Implementation

Language implementations are obviously built differently, but there are some general

patterns.

A language implementation can be subdivided into the following parts

● Front end - takes in your source code and turns it into an intermediate

representation.

● Middle end - takes the intermediate representation and applies optimizations

to it.

● Back end - takes the optimized intermediate representation and turns it into

machine code or bytecode.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpDSkxKR0lLSXlJeEV4SXlKRUlKRXlJR0l5SkpJeEl2SXlJRElHRXlJREl2SkdJSEpFSXhJREpHSUxKSUlISkZFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSXhKR0lISkVJd0lISUdJTElESkdJSEh5SkVJSEpDSkVJSEpGSUhJeEpHSURKR0lMSXlJeEVGRnRKeEZ0SkdJSEpLSkdGd0dESXhFSEZFRkNJTEl4SkdJSEpFSXdJSElHSUxJREpHSUhFSEZFRkNKRUlISkNKRUlISkZJSEl4SkdJREpHSUxJeUl4RUhGRUZDRUtHTEhFRUxFSEZFRkNJTEpGRXZKRkpISUZJS0VIRkVGQ0lESkZFSEZFRkNJeUpDSkdJTEl3SUxKdElESkdJTEl5SXhFSEZFRkNJREl4SUdFSEZFRkNKR0pFSURJeEpGSXZJREpHSUxJeUl4RXhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkhGSEZLSUhGRklIRkRFd0ZLRktGTEZFRXdGR0lESUZGREV3RktGQ0ZHSUlFd0ZIRkhGS0ZLSUlGTElERkVGQ0ZFSUVGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSXhKR0lISkVJd0lISUdJTElESkdJSEh5SkVJSEpDSkVJSEpGSUhJeEpHSURKR0lMSXlJeEVGRnRKeEZ0SkdJSEpLSkdGd0dESXhFSEZFRkNJTEl4SkdJSEpFSXdJSElHSUxJREpHSUhFSEZFRkNKRUlISkNKRUlISkZJSEl4SkdJREpHSUxJeUl4RUhGRUZDRUtHTEhFRUxFSEZFRkNJTEpGRXZKRkpISUZJS0VIRkVGQ0lESkZFSEZFRkNJeUpDSkdJTEl3SUxKdElESkdJTEl5SXhFSEZFRkNJREl4SUdFSEZFRkNKR0pFSURJeEpGSXZJREpHSUxJeUl4RXhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkhGSEZLSUhGRklIRkRFd0ZLRktGTEZFRXdGR0lESUZGREV3RktGQ0ZHSUlFd0ZIRkhGS0ZLSUlGTElERkVGQ0ZFSUVGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

The intermediate representation is a data structure or code that makes the compiler

more modular. It allows you to reuse your front end for multiple target platforms and

reuse your backend for multiple source languages.

For example, you can write multiple back ends that turn the intermediate representation

into machine code for x86, ARM, and other platforms and then reuse the same front end

that turns your C code into intermediate representation.

LLVM is designed around a high-level assembly language that is named “intermediate

representation” (here’s the language reference for LLVM IR) while CPython uses a data

structure called the Control Flow Graph.

We’ll break down all of these concepts further…

Front end

As we said before, the front end is responsible for taking in your source code and

turning it into an intermediate representation.

The first part is scanning (also known as lexical analysis). This is where the front end

reads your source code and converts it into a series of tokens. A token is a single element

of a programming language. It can be a single character, like a {, or it can be a word, like

System.out.println.

After scanning and converting your source code into tokens, the next step is parsing.

A parser will take in the flat sequence of tokens and build a tree structure based on the

programming language’s grammar.

This tree is usually called an abstract syntax tree (AST). While the parser is creating the

abstract syntax tree, it will let you know if there are any syntax errors in your code.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJdkl2SklJd0V4SXlKRUlKRXlJR0l5SUZKRkV5R3ZJREl4SUpIRUlISUlFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZIRkhGS0lIRkZJSEZERXdGS0ZLRkxGRUV3RkdJRElGRkRFd0ZLRkNGR0lJRXdGSEZIRktGS0lJRkxJREZFRkNGRUlFRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXlJeEpHSkVJeUl2RXdJSUl2SXlKSkh5SUpKRUlESkNJS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd2SUhKS0lMSUZJREl2SHlJREl4SURJdkpMSkZJTEpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZIRkhGS0lIRkZJSEZERXdGS0ZLRkxGRUV3RkdJRElGRkRFd0ZLRkNGR0lJRXdGSEZIRktGS0lJRkxJREZFRkNGRUlFRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTElFSXlJeUl1SkZFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSXhKR0pFSXlJR0pISUZKR0lMSXlJeEh5SkdJeUh5SENKRUl5SUpKRUlESXdJd0lMSXhJSkh5R3ZJREl4SUpKSElESUpJSEpGRXlHSkpFSURJd0l3SURKRUpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZIRkhGS0lIRkZJSEZERXdGS0ZLRkxGRUV3RkdJRElGRkRFd0ZLRkNGR0lJRXdGSEZIRktGS0lJRkxJREZFRkNGRUlFRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The front end will also handle tasks like binding. This is where every identifier (variable,

etc.) gets linked to where it’s defined.

If the language is statically typed, this is where type checking happens and type errors

are reported.

In terms of storing this information, language implementations will do this differently.

Some will store it on the abstract syntax tree as attributes. Others will store it in a

lookup table called a symbol table.

All this information will be stored in some type of intermediate representation.

There are a couple of well established styles of intermediate representation out there.

Examples include

● Control Flow Graph

● Static Single Assignment

● Three-address Code

● Continuation-passing Style

Having a shared intermediate representation helps make your compiler design much

more modular.

Middle End

The middle end is responsible for performing various optimizations on the intermediate

representation.

These optimizations are independent of the platform that’s being targeted, therefore

they’ll speed up your code regardless of what the backend does.

An example of an optimization is constant folding: if some expression always evaluates

to the exact same value, then do that evaluation at compile time and replace the code for

the expression with the result.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXlJeEpHSkVJeUl2RXdJSUl2SXlKSkh5SUpKRUlESkNJS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkdJREpHSUxJRkh5SkZJTEl4SUpJdklISHlJREpGSkZJTElKSXhJd0lISXhKR0h5SUlJeUpFSXdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkhGSEZLSUhGRklIRkRFd0ZLRktGTEZFRXdGR0lESUZGREV3RktGQ0ZHSUlFd0ZIRkhGS0ZLSUlGTElERkVGQ0ZFSUVGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhHSUtKRUlISUhFd0lESUdJR0pFSUhKRkpGSHlJRkl5SUdJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXlJeEpHSUxJeEpISURKR0lMSXlJeEV3SkNJREpGSkZJTEl4SUpIeUpGSkdKTEl2SUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlFRkhGSEZLSUhGRklIRkRFd0ZLRktGTEZFRXdGR0lESUZGREV3RktGQ0ZHSUlFd0ZIRkhGS0ZLSUlGTElERkVGQ0ZFSUVGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXlJeEpGSkdJREl4SkdIeUlJSXlJdklHSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRUZIRkhGS0lIRkZJSEZERXdGS0ZLRkxGRUV3RkdJRElGRkRFd0ZLRkNGR0lJRXdGSEZIRktGS0lJRkxJREZFRkNGRUlFRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

So, replace

With the result of that expression.

Other examples are removal of unreachable code (reachability analysis) and code that

does not affect the program results (dead code elimination).

Back End

The back end is responsible for taking the optimized intermediate representation from

the middle end and generating the machine code for the specific CPU architecture of the

computer (or generating bytecode).

The back end may perform more analysis, transformations and optimizations that are

specific for that CPU architecture.

If the back end produces bytecode, then you’ll also need another compiler for each

target architecture that turns that bytecode into machine code.

Or, many runtimes rely on a virtual machine, where a program emulates a hypothetical

chip. The bytecode is run on that virtual machine.

An example is the Java Virtual Machine, which runs Java bytecode. You can reuse that

backend and write frontends to handle different languages. Python, Kotlin, Clojure and

Scala are a few examples of languages that have front ends that can convert that

language into Java bytecode.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSUhJRElGSUtJRElFSUxJdklMSkdKTEh5SURJeElESXZKTEpGSUxKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSUhJRElHSHlJRkl5SUdJSEh5SUhJdklMSXdJTEl4SURKR0lMSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUVGSEZIRktJSEZGSUhGREV3RktGS0ZMRkVFd0ZHSURJRkZERXdGS0ZDRkdJSUV3RkhGSEZLRktJSUZMSURGRUZDRkVJRUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Airbnb’s Architecture

Jessica Tai is an engineering manager at Airbnb where she works on platform

infrastructure. She gave a great talk at QCon on Airbnb’s architecture and how it’s

shifted over the years.

Here’s a summary

Airbnb has been through three major stages in their architecture since the company’s

founding.

Airbnb started as a Ruby on Rails monolith, then transitioned to a microservices

architecture and has now migrated to a hybrid between micro and macroservices (a

macroservice aggregates multiple microservices).

We’ll go through each architecture and talk about the pros/cons and why Airbnb

migrated.

Monolith (2008 - 2017)

Airbnb started off with a Ruby on Rails monolith and it worked really well for the

company.

Most engineers were full stack and could work on every part of the codebase, executing

on end-to-end features by themselves. Features could be completed within a single

team, which helped the company build new products very quickly.

However, as Airbnb entered hypergrowth, the number of engineers, teams, and lines of

code scaled up very quickly.

It became impossible for a single engineer/team to have context on the entire codebase,

so ownership and team boundaries were needed.

Airbnb struggled with drawing these team boundaries since the monolith was very

tightly coupled. Code changes in one team were having unintended consequences for

another team and who owned what was confusing for different parts of the codebase.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKTEl5SkhKR0pIRXhJRUlIRXlKTEdKR3lKR0hHSUdFd0l2SHlGRkdIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZISUVJSUlESUlGRkZDRXdGR0ZHSUVJR0V3RkdGRUZJRkpFd0lFSUhGSklJRXdJREZFSUlGRkZESUdJRkZGSUVJR0ZDSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

There were other scaling pain points like extremely slow deploys, sometimes taking over

a day to get a single deploy done.

These issues were leading to a slower developer velocity and Airbnb decided to shift to a

microservices oriented approach to reduce these pain points.

Microservices (2017 - 2020)

After learning from their experience with the monolith, Airbnb engineers wanted to be

more disciplined with their approach to microservices.

They decided to have 4 different service types

1. Data fetching service to read and write data

2. A business logic service able to apply functions and combine different pieces

of data together

3. A workflow service for write orchestration. This handles operations that

involve touching pieces of data across multiple services.

4. A UI aggregation service that puts this all together for the UI

To avoid ownership issues seen with the monolith, each microservice would only have

one owning team (and each team could own multiple services).

With these changes, Airbnb also changed the way engineering teams were structured.

Previously, engineering teams were full stack and able to handle anything. But now,

with microservices, Airbnb shifted to teams that were just focused on a certain parts of

the stack. Some were focused on certain data services while others were focused on

specific pieces of business logic.

Airbnb also had a specific team that was tasked with running the migration of monolith

to microservice. This team was responsible for building tooling to help with the

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

migration and to teach Airbnb engineers the best practices of microservice building and

operations.

After a few years into the microservices migration, new challenges started to arise.

Managing all these services and their dependencies was quite difficult. Teams needed to

be more aware of the service ecosystem to understand where any dependencies may lie.

Building an end-to-end feature meant using various services across the stack, so

different engineering teams would all need to be involved. All of these teams needed to

have similar priorities around that feature, which was difficult to manage as each team

owned multiple services.

Micro + Macroservices (2020 -)

To address those collaboration challenges, Airbnb is now instituting a hybrid approach

between micro and macroservices. This model focuses on the unification of APIs and on

consolidating to make clear places to go for certain pieces of data or functionality.

They’re creating a system where their internal backend service gets its data from the

data aggregation service. The data aggregator then communicates with the various

service blocks where each service block encapsulates a collection of microservices.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

A challenge that Airbnb engineers foresee with this approach is that the data aggregator

can become a new monolith. To avoid that, they’re very disciplined about what

data/service belongs where.

For the service block layer, engineers need to make sure that they’re defining the

schema boundaries in a clean way. There are many pieces of data/logic that can span

multiple entities, so it needs to be clearly defined.

For more details, you can watch Jessica’s full talk here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKTEl5SkhKR0pIRXhJRUlIRXlKTEdKR3lKR0hHSUdFd0l2SHlGRkdIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZISUVJSUlESUlGRkZDRXdGR0ZHSUVJR0V3RkdGRUZJRkpFd0lFSUhGSklJRXdJREZFSUlGRkZESUdJRkZGSUVJR0ZDSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The Architecture of Apache Spark

Spark is an open source project that makes it much easier to run computations on large,

distributed data. It’s widely used to run datacenter computations and its popularity has

been exploding since 2012.

It’s now become one of the most popular open source projects in the big data space and

is used by companies like Amazon, Tencent, Shopify, eBay and more.

Before Spark, engineers relied on Hadoop MapReduce to run computations on their

data, but there were quite a few issues with that approach.

Spark was introduced as a way to solve those pain points, and it’s quickly evolved into

much more.

We’ll talk about why Spark was created, what makes Spark so fast and how it works

under the hood.

We’ll start with a brief overview of MapReduce.

History of MapReduce

In a previous tech dive, we talked about Google MapReduce and how Google was using

it to run massive computations to help power Google Search.

MapReduce introduced a new parallel programming paradigm that made it much easier

to run computations on massive amounts of distributed data.

Although Google’s implementation of MapReduce was proprietary, it was

re-implemented as part of Apache Hadoop.

Hadoop gained widespread popularity as a set of open source tools for companies

dealing with massive amounts of data.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpESkhJREpGSkdJeUpFRXhJeUpFSUpFeUpDRXlJd0lESkNKRUlISUdKSElGSUhFd0lISktKQ0l2SURJTEl4SUhJR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRElESUdGSElHSUVGSEV3RkxJSUZKRkpFd0ZHRkpGQ0ZMRXdGTElJSURGQ0V3RkpJSUlFRkVGSEZMRklGREZJRklGSUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0tJRElHSXlJeUpDRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

HowMapReduce Works

Let’s say you have 100 terabytes of data split across 100 different machines. You want to

run some computations on this data.

With MapReduce, you take your computation and split it into a Map function and a

Reduce function.

You take the code from your map function and run it on each of the 100 machines in a

parallel manner.

On each machine, the map function will take in that machine’s chunk of the data and

output the results of the map function.

The output will get written to local disk on that machine (or a nearby machine if there

isn’t enough space on local).

Then, the reduce function will take in the output of all the map functions and combine

that to give the answer to your computation.

Issues with MapReduce

The MapReduce framework on Hadoop had some shortcomings that were becoming big

issues for engineers.

● Iterative Jobs - A common use case for MapReduce is to stack multiple

MapReduce jobs sequentially, and run them one after the other.MapReduce

will write to disk after both the Map and Reduce steps, so this leads to a huge

amount of disk I/O.Disk I/O can obviously be very slow, so this caused large

MapReduce jobs (involving multiple MapReduce steps one after another) to

be very slow and take hours/days.

● Interactive Analysis - When you store data on Hadoop (using HDFS), you’ll

want to run ad-hoc exploratory queries to better understand your data. Doing

this with MapReduce can be a pain because of how unintuitive it can be to

create Map and Reduce functions to do your data exploration.Instead, you’ll

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SURKQ0h5RUtJS0lMSUpJS0lISkVFd0l5SkVJR0lISkVIeUlJSkhJeElGSkdJTEl5SXhFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRElESUdGSElHSUVGSEV3RkxJSUZKRkpFd0ZHRkpGQ0ZMRXdGTElJSURGQ0V3RkpJSUlFRkVGSEZMRklGREZJRklGSUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSXlJdklHSHlFS0lLSUxJSklLSUhKRUV3SXlKRUlHSUhKRUh5SUlKSEl4SUZKR0lMSXlJeEVMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0tJRElHSXlJeUpDRUZHS0lESUdJeUl5SkNIeUlHSUxKRkpHSkVJTElFSkhKR0lISUdIeUlJSUxJdklISHlKRkpMSkZKR0lISXdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkRJRElHRkhJR0lFRkhFd0ZMSUlGSkZKRXdGR0ZKRkNGTEV3RkxJSUlERkNFd0ZKSUlJRUZFRkhGTEZJRkRGSUZJRklGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

use something like Hive (an SQL query engine for Hadoop) so you can just

write SQL queries to view your data. However, with Hadoop, Hive will be

executing those SQL queries using MapReduce, which means significant

latency for the reasons described above (lots of disk I/O).

● Lack of Flexibility - Hadoop MapReduce works for general batch processing

tasks, but it becomes very unwieldy for handling other workloads like

machine learning, streaming, or interactive SQL queries (described above).

Turning complex jobs into Map and Reduce functions can be difficult.This

meant that other tools had to be developed to handle those workloads like

Hive, Storm, Mahout, etc.

Creation of Apache Spark

Apache Spark was created as a successor to MapReduce to ease these problems.

The main goal was to create a fast and versatile tool to handle distributed processing of

large amounts of data. The tool should be able to handle a variety of different workloads,

with a specific emphasis on workloads that reuse a working set of data across multiple

operations.

Many common machine learning algorithms will repeatedly apply a function to the

same dataset to optimize a parameter (ex. Gradient descent).

Running a bunch of random SQL queries on a dataset to get a feel for it is another

example of reusing a working set of data across multiple operations (SQL queries in this

scenario).

Spark is designed to handle these operations with ease.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJRElHSUxJSEl4SkdIeUlHSUhKRklGSUhJeEpHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Overview of Spark

Spark is a program for distributed data processing, so it runs on top of your data storage

layer. You can use Spark on top of Hadoop Distributed File System, MongoDB, HBase,

Cassandra, Amazon S3, RDBMSs and a bunch of other storage layers.

In a Spark program, you can transform your data in different ways (filter, map,

intersection, union, etc.) and Spark can distribute these operations across multiple

computers for parallel processing.

Spark offers nearly 100 high-level, commonly needed data processing operators and you

can use Spark with Scala, Java, Python and R.

Spark also offers libraries on top to handle a diverse range of workloads.

● Spark SQL will let you use SQL queries to do data processing.

● Spark MLlib has common machine learning algorithms like logistic

regression.

● Spark Structured Streaming lets you process real-time streaming data from

something like Kafka or Kinesis.

● GraphX will let you manipulate graphs and offers algorithms for traversal,

connections, etc. You can use algorithms like pagerank, triangle counting and

connected components.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpDSURKRUl1RXhJREpDSURJRklLSUhFeEl5SkVJSkV5SUdJeUlGSkZFeUl2SURKR0lISkZKR0V5SkVJR0lHRXdKQ0pFSXlJSkpFSURJd0l3SUxJeElKRXdJSkpISUxJR0lIRXhJS0pHSXdJdkVGSkdKRUlESXhKRklJSXlKRUl3SURKR0lMSXlJeEpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Why is Spark Fast?

Spark’s speed comes from two main architectural choices

1. Lazy Evaluation - When you’re manipulating your data, Sparkwill not

execute your manipulations (called transformations in Spark lingo)

immediately.Instead, Spark will take your transformations (like sort, join,

map, filter, etc.) and keep track of them in a Directed Acyclic Graph (DAG). A

DAG is just a graph (a set of nodes and edges) where the nodes have directed

edges (the first transformation will point to the second transformation and so

on) and the graph has no cycles.Then, when you want to get your results, you

can trigger an Action in Spark. Actions trigger the evaluation of all the

recorded transformations in the DAG.Because Spark knows what all your

chained transformations are, Spark can then use its optimizer to construct the

most efficient way to execute all the transformations in a parallel way. This

helps make Spark much faster.

2. In Memory - We’ve said several times above that one of the issues with

MapReduce is all the disk I/O. Spark solves this by retaining all the

intermediate results in memory.After you trigger an Action, Spark will be

calculating all the transformations in RAM using the memory from all the

machines in your Spark cluster and then run the computations.If you don’t

have enough RAM, then Spark can also use disk and swap data between the

two.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpDSURKRUl1RXhJREpDSURJRklLSUhFeEl5SkVJSkV5SUdJeUlGSkZFeUl2SURKR0lISkZKR0V5SkVJR0lHRXdKQ0pFSXlJSkpFSURJd0l3SUxJeElKRXdJSkpISUxJR0lIRXhJS0pHSXdJdkVGSkdKRUlESXhKRklJSXlKRUl3SURKR0lMSXlJeEpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSUxKRUlISUZKR0lISUdIeUlESUZKTElGSXZJTElGSHlJSkpFSURKQ0lLRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpDSURKRUl1RXhJREpDSURJRklLSUhFeEl5SkVJSkV5SUdJeUlGSkZFeUl2SURKR0lISkZKR0V5SkVJR0lHRXdKQ0pFSXlJSkpFSURJd0l3SUxJeElKRXdJSkpISUxJR0lIRXhJS0pHSXdJdkVGSURJRkpHSUxJeUl4SkZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkRJRElHRkhJR0lFRkhFd0ZMSUlGSkZKRXdGR0ZKRkNGTEV3RkxJSUlERkNFd0ZKSUlJRUZFRkhGTEZJRkRGSUZJRklGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Architecture of Spark

As we said before, Spark is a distributed data processing engine that can process huge

volumes of data distributed across thousands of machines.

The collection of machines is called a Spark cluster and the largest Spark cluster is

around 8000 machines. (Note. You can also run Spark on a single machine. If you want,

you can download it from the Apache website)

Leader-Worker Architecture

Spark is based on a leader-worker architecture. In Spark lingo, the leader is called the

Spark driver while the worker is called the Spark executor.

A Spark application has a single driver, where the driver functions as the central

coordinator. You’ll be interacting with the driver with your Scala/Python/R/Java code

and you can run the driver on your own machine or on one of the machines in the Spark

cluster.

The executors are the worker processes that execute the instructions given to them by

the driver. Each Spark executor is a JVM process that is run on each of the nodes in the

Spark cluster (you’ll mostly have one executor per node).

The Spark executor will get assigned tasks that require working on a partition of the

data that is closest to them in the cluster. This helps reduce network congestion.

When you’re working with a distributed system, you’ll typically use a cluster manager

(like Apache Mesos, Kubernetes, Docker Swarm, etc.) to help manage all the nodes in

your cluster.

Spark is no different. The Spark driver will work with a cluster manager to orchestrate

the Spark Executors. You can configure Spark to use Apache Mesos, Kubernetes,

Hadoop YARN or Spark’s built-in cluster manager.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpDSURKRUl1RXhJREpDSURJRklLSUhFeEl5SkVJSkV5SUdJeUpKSXhJdkl5SURJR0pGRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRElESUdGSElHSUVGSEV3RkxJSUZKRkpFd0ZHRkpGQ0ZMRXdGTElJSURGQ0V3RkpJSUlFRkVGSEZMRklGREZJRklGSUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXZKSEpGSkdJSEpFSHlJd0lESXhJRElKSUhKRUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRElESUdGSElHSUVGSEV3RkxJSUZKRkpFd0ZHRkpGQ0ZMRXdGTElJSURGQ0V3RkpJSUlFRkVGSEZMRklGREZJRklGSUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Resilient Distributed Dataset

When Spark runs your computations on the given datasets, it uses a data structure

called a Resilient Distributed Dataset (RDD).

RDDs are the fundamental abstraction for representing data in Spark and they were first

introduced in the original Spark paper.

Spark will look at your dataset across all the partitions and create an RDD that

represents it. This RDD will then be stored in memory where it will be manipulated

through transformations and actions.

The key features of RDDs are

● Resilience - RDDs are fault-tolerant and able to survive failures of the nodes

in the Spark cluster. As you call transformation operations on your RDD,

Spark will be building up a DAG of all the transformations. This DAG can be

used to track the data lineage of all the RDDs so you can reconstruct any of

the past RDDs if one of the machines fails.Just note, this is fault tolerance for

the RDD, not for the underlying data. Spark is assuming that the storage layer

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpISkZJSEl4SUxKS0V4SXlKRUlKRXlKRkpMSkZKR0lISXdFeUlJSUxJdklISkZFeUlGSXlJeElJSUhKRUlISXhJRklIRXlJeEpGSUdJTEZERkVFeUl4SkZJR0lMRkRGRUV3SUlJTEl4SURJdkZERkZGS0V4SkNJR0lJRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZESURJR0ZISUdJRUZIRXdGTElJRkpGSkV3RkdGSkZDRkxFd0ZMSUlJREZDRXdGSklJSUVGRUZIRkxGSUZERklGSUZJRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESHlJdklMSXhJSElESUpJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGRElESUdGSElHSUVGSEV3RkxJSUZKRkpFd0ZHRkpGQ0ZMRXdGTElJSURGQ0V3RkpJSUlFRkVGSEZMRklGREZJRklGSUZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

(HDFS, S3, Cassandra, whatever) is handling redundancy for the underlying

data.

● Distributed - Spark assumes your data is split across multiple machines so

RDDs are also split across a cluster of machines. Spark will place executors

close to the underlying data to reduce network congestion.

● Immutability - RDDs are immutable. When you apply transformations to an

RDD, you don’t change that RDD but instead create a new RDD. Immutability

means every RDD is a deterministic function of the input. This makes

caching, sharing and replication of RDDs much easier.

Directed Acyclic Graph

As you’re running your transformations, Spark will not be executing any computations.

Instead, the Spark driver will be adding these transformations to a Directed Acyclic

Graph. You can think of this as just a flowchart of all the transformations you’re

applying on the data.

Once you call an action, then the Spark driver will start computing all the

transformations. Within the driver are the DAG Scheduler and the Task Scheduler.

These two will manage executing the DAG.

When you call an action, the DAG will go to the DAG scheduler.

The DAG scheduler will divide the DAG into different stages where each stage contains

various tasks related to your transformations.

The DAG scheduler will run various optimizations to make sure that the stages are being

done in the most optimal way to eliminate any redundant computations. Then, it will

create a set of stages and then pass this to the Task Scheduler.

The Task Scheduler will then coordinate with the Cluster Manager (Apache Mesos,

Kubernetes, Hadoop YARN, etc.) to execute all the stages using the machines in your

Spark cluster and get the results from the computations.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Netflix’s Rapid Event Notification System

Netflix is an online video streaming service that operates at insane scale. They have

more than 220 million active users and account for more of the world's downstream

internet traffic than YouTube (in 2018, Netflix accounted for ~15% of the world’s

downstream traffic).

These 220 million active users are accessing their Netflix account from multiple devices,

so Netflix engineers have to make sure that all the different clients that a user logs in

from are synced.

You might start watching Breaking Bad on your iPhone and then switch over to your

laptop. After you switch to your laptop, you expect Netflix to continue playback of the

show exactly where you left off on your iPhone.

Syncing between all these devices for all of their users requires an immense amount of

communication between Netflix’s backend and all the various clients (iOS, Android,

smart TV, web browser, Roku, etc.). At peak, it can be about 150,000 events per second.

To handle this, Netflix built RENO, their Rapid Event Notification System.

Ankush Gulati and David Gevorkyan are two senior software engineers at Netflix, and

they wrote a great blog post on the design decision behind RENO.

Here’s a Summary

Netflix users will be using their account with different devices.

Netflix engineers have to make sure that things like viewing activity, membership plan,

movie recommendations, profile changes, etc. are synced between all these devices.

The company uses a microservices architecture for their backend, and built the RENO

service to handle this task.

There were several key design decisions behind RENO

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJeElISkdJSUl2SUxKS0pHSUhJRklLSUVJdkl5SUpFeElGSXlJd0V5SkVJREpDSUxJR0V3SUhKSUlISXhKR0V3SXhJeUpHSUxJSUlMSUZJREpHSUxJeUl4RXdKRkpMSkZKR0lISXdFd0lESkdFd0l4SUhKR0lJSXZJTEpLRXdGSUlHSUhJRUZESUdGRUlFRkhGSklHRkRFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRktJSEZHSUhJR0ZFRkZFd0lFRkRGRElFRXdGR0ZDRktGSkV3SURGTElIRklFd0lGRktGTEZFRktJRUZGSUVJSUlHSUZJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

1. Single Event Source - All the various events (viewing activity,

recommendations, etc.) that RENO has to track come from different internal

systems. To simplify this, engineers used an Event Management Engine that

serves as a level of indirection. This Event Management Engine layer is the

single source of events for RENO.All the events from the various backend

services go to the Event Management Engine, from where they’re passed to

RENO.

2. Event Prioritization - If a user changes their child’s profile maturity level, that

event change should have a very high priority compared to other events.

Therefore, each event-type that RENO handles has a priority assigned to it

and RENO then shards by that event priority.This way, Netflix can tune

system configuration and scaling policies differently for events based on their

priority.

3. Hybrid Communication Model - RENO has to support mobile devices, smart

TVs, browsers, etc. While a mobile device is almost always connected to the

internet and reachable, a smart TV is only online when in use.Therefore,

RENO has to rely on a hybrid push AND pull communication model, where

the server tries to deliver all notifications to all devices immediately using

push. Devices will pull from the backend at various stages of the application

lifecycle.Solely using pull doesn’t work because it makes the mobile apps too

chatty and solely using push doesn’t work when a device is turned off.

4. Targeted Delivery - RENO has support for device specific notification

delivery. If a certain notification only needs to go to mobile apps, RENO can

solely deliver to those devices. This limits the outgoing traffic footprint

significantly.

5. Managing High RPS - At peak times, RENO serves 150,000 events per

second. This high load can put strain on the downstream services.Netflix

handles this high load by adding various gate checks before sending an

event.Some of the gate checks are

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSkhJeElHSURJd0lISXhKR0lESXZIeUpHSUtJSEl5SkVJSEl3SHlJeUlJSHlKRkl5SUlKR0pKSURKRUlISHlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZLSUhGR0lISUdGRUZGRXdJRUZERkRJRUV3RkdGQ0ZLRkpFd0lERkxJSEZJRXdJRkZLRkxGRUZLSUVGRklFSUlJR0lGSUZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

1. Staleness - Many events are time sensitive so RENO will not send

an event if it’s older than it’s staleness threshold

2. Online Devices - RENO keeps track of which devices are currently

online using Zuul. It will only push events to a device if it’s online.

3. Duplication - RENO checks for any duplicate incoming events and

corrects that.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJeElISkdJSUl2SUxKS0pHSUhJRklLSUVJdkl5SUpFeElGSXlJd0V5SkdJRElKSUpJSElHRXlKdEpISkhJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktGS0lIRkdJSElHRkVGRkV3SUVGREZESUVFd0ZHRkNGS0ZKRXdJREZMSUhGSUV3SUZGS0ZMRkVGS0lFRkZJRUlJSUdJRklGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Architecture

Here’s a diagram of RENO.

We’ll go through all the components below.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

At the top, you have Event Triggers.

These are from the various backend services that handle things like movie

recommendations, profile changes, watch activity, etc.

Whenever there are any changes, an event is created. These events go to the Event

Management Engine.

The Event Management Engine serves as a layer of indirection so that RENO has a

single source of events.

From there, the events get passed down to Amazon SQS queues. These queues are

sharded based on event priority.

AWS Instance Clusters will subscribe to the various queues and then process the events

off those queues. They will generate actionable notifications for all the devices.

These notifications then get sent to Netflix’s outbound messaging system. This system

handles delivery to all the various devices.

The notifications will also get sent to a Cassandra database. When devices need to pull

for notifications, they can do so using the Cassandra database (remember it’s a Hybrid

Communications Model of push and pull).

The RENO system has served Netflix well as they’ve scaled. It is horizontally scalable

due to the decision of sharding by event priority and adding more machines to the

processing cluster layer.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJeElISkdJSUl2SUxKS0pHSUhJRklLSUVJdkl5SUpFeElGSXlJd0V5SkVJREpDSUxJR0V3SUhKSUlISXhKR0V3SXhJeUpHSUxJSUlMSUZJREpHSUxJeUl4RXdKRkpMSkZKR0lISXdFd0lESkdFd0l4SUhKR0lJSXZJTEpLRXdGSUlHSUhJRUZESUdGRUlFRkhGSklHRkRFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRktJSEZHSUhJR0ZFRkZFd0lFRkRGRElFRXdGR0ZDRktGSkV3SURGTElIRklFd0lGRktGTEZFRktJRUZGSUVJSUlHSUZJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Bloom Filters

A bloom filter is a very space-efficient data structure that can quickly (constant time)

tell you if an item doesn’t exist in a group of items.

When you’re creating a new username on Twitter and they have to check whether that

username is already taken, a bloom filter is a great data structure to use for speeding

that up.

How Bloom Filters Work

A bloom filter is like a simpler version of a hash table.

The core data structure in a bloom filter is a bit vector (an array of bits). This bit vector

will be used to keep track of items that exist in the set.

When you want to insert an item, you’ll first use a hash function (or multiple hash

functions) to hash that item into an integer.

Then, you can mod that integer by the number of slots in your bit vector

integer % num_slots_bit_vector

This will give you a slot in your bit vector for that item. You set that slot’s bit to 1. Then,

you can add the item to your database (or whatever storage layer you’re using).

If you want to check if some item exists in your bloom filter, you can repeat the process

of hashing and modulus to find the corresponding slot in the bit vector. If the slot in the

bit vector is not set to 1, then you immediately know that the item does not exist in the

set. You don’t have to query your database (which is a lot more expensive than using the

bloom filter).

However, if the slot in the bit vector for that item is set to 1, then that doesn’t tell you for

sure that the item exists in the set. You’ll have to do a further check within your

database to know for certain.

The bloom filter will only tell you if an item doesn’t exist in the set.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdFSUxKR0h5SURKRUpFSURKTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNJSEZMRkNGSEZDSUhGREV3SUVJREZISUdFd0ZHSUlGREZHRXdJRElJRkdJSUV3RkNGSUlGRkpJRkZLSUlGQ0lESUZJSElIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdLSURKRklLSHlJSUpISXhJRkpHSUxJeUl4RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0lIRkxGQ0ZIRkNJSEZERXdJRUlERkhJR0V3RkdJSUZERkdFd0lESUlGR0lJRXdGQ0ZJSUZGSklGRktJSUZDSURJRklISUhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

This is because of possible collisions with your hash function (pigeonhole principle).

Your bit vector only has a limited number of slots, and the number of possible items is

much, much larger than the number of slots.

You’ll eventually run into a scenario where two different items get mapped to the same

slot in your bloom filter’s bit vector.

Therefore, bloom filters will tell you if an item is either

1. possibly in the set

2. definitely not in the set

False positive matches are possible, but false negatives are not.

Comparing Bloom Filters and Hash Tables

Bloom filters are very similar to hash tables, but a hash table eliminates the possibility

of false positive matches through collision resolution.

The hash table solves the collision problem with solutions like open addressing.

The downside of this is that it makes the hash table take up far more space than the

bloom filter.

If you want to keep track of every single twitter username in your data structure, a hash

table may become too large to store in-memory. In that situation, you’ll want to use a

bloom filter.

Example Use Case

Going back to the twitter example, let’s say you’re an engineer at twitter and you’re

working on the sign up form for new users.

When a new user tries to create their username, they need to quickly find out if their

username has already been taken.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSUxJSklISXlJeElLSXlJdklISHlKQ0pFSUxJeElGSUxKQ0l2SUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDSUhGTEZDRkhGQ0lIRkRFd0lFSURGSElHRXdGR0lJRkRGR0V3SURJSUZHSUlFd0ZDRklJRkZKSUZGS0lJRkNJRElGSUhJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdLSURKRklLSHlKR0lESUVJdklIRUZHRkl5SXZJdklMSkZJTEl5SXhIeUpFSUhKRkl5SXZKSEpHSUxJeUl4RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0lIRkxGQ0ZIRkNJSEZERXdJRUlERkhJR0V3RkdJSUZERkdFd0lESUlGR0lJRXdGQ0ZJSUZGSklGRktJSUZDSURJRklISUhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd5SkNJSEl4SHlJRElHSUdKRUlISkZKRklMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNJSEZMRkNGSEZDSUhGREV3SUVJREZISUdFd0ZHSUlGREZHRXdJRElJRkdJSUV3RkNGSUlGRkpJRkZLSUlGQ0lESUZJSElIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Sending a query to your database every single time a user attempts to create a username

can result in unnecessary load on the database.

Therefore, you can use a bloom filter to quickly check if a username is unique.

If the username doesn’t exist in the bloom filter, then you can avoid querying the

database.

If the username does exist in the bloom filter, then you can query the database to check

if the username is already taken or if the bloom filter match was a false positive.

Real World Use Cases

Databases use bloom filters extensively to reduce disk lookups for non-existent

rows/columns. Apache Cassandra, Postgres and Google Big Table are just a few

examples of databases that use bloom filters to reduce disk lookups.

The Akamai Content Delivery Network (one of the largest CDNs in the world) uses

bloom filters to avoid “one-hit wonders” from being stored in their caches.

One-hit-wonders are objects that are requested by users just once. Akamai uses a bloom

filter to detect the second request for a web object and then cache it only after the

second request.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESXVJREl3SURJTEh5SEdJSElGSUtJeEl5SXZJeUlKSUxJSEpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0lIRkxGQ0ZIRkNJSEZERXdJRUlERkhJR0V3RkdJSUZERkdFd0lESUlGR0lJRXdGQ0ZJSUZGSklGRktJSUZDSURJRklISUhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SkhKRUpGSUhKRkV4SUZKRkV4SUdKSEl1SUhFeElISUdKSEV5SkZKQ0pFSUxJeElKRkRGSUV5SUZJeUl3SkNKRklGSUxGSEZMRkNFeEZJRXlHRkdGSEVKQ0lESkNJSEpFRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDSUhGTEZDRkhGQ0lIRkRFd0lFSURGSElHRXdGR0lJRkRGR0V3SURJSUZHSUlFd0ZDRklJRkZKSUZGS0lJRkNJRElGSUhJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SkhKRUpGSUhKRkV4SUZKRkV4SUdKSEl1SUhFeElISUdKSEV5SkZKQ0pFSUxJeElKRkRGSUV5SUZJeUl3SkNKRklGSUxGSEZMRkNFeEZJRXlHRkdGSEVKQ0lESkNJSEpFRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDSUhGTEZDRkhGQ0lIRkRFd0lFSURGSElHRXdGR0lJRkRGR0V3SURJSUZHSUlFd0ZDRklJRkZKSUZGS0lJRkNJRElGSUhJSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Scaling an API with Rate Limiters

Stripe Engineering wrote a fantastic blog post on how they think about rate limiters.

Here’s a summary.

Rate Limiting is a technique used to limit the amount of requests a client can send to

your server.

It’s incredibly important to prevent DoS attacks from clients that are (accidentally or

maliciously) flooding your server with requests.

A rule of thumb for when you should use a rate limiter is if your users can reduce the

frequency of their API requests without affecting the outcome of their requests, then a

rate limiter is appropriate.

For example, if you’re running Facebook’s API and you have a user sending 60 requests

a minute to query for their list of Facebook friends, you can rate limit them without

affecting their outcome. It’s unlikely that they’re adding new Facebook friends every

single second.

Rate Limiting is great for day-to-day operations, but you’ll occasionally have incidents

where some component of your system is down and you can’t process requests at your

normal level.

In these scenarios, Load Shedding is a technique where you drop low-priority requests

to make sure that critical requests get through.

Stripe is a payment processing company (you can use their API to collect payments from

your users) so a critical request for them is a request to charge a user money.

An example of a non-critical method would be a request to read charge data from the

past.

Stripe uses 4 different types of limiters in production (2 rate limiters and 2 load

shedders).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpHSkVJTEpDSUhFeElGSXlJd0V5SUVJdkl5SUpFeUpFSURKR0lIRXdJdklMSXdJTEpHSUhKRUpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZESUdGQ0lGSUZGREZERXdGTElGSUdJREV3RkdJSUZLRkRFd0lFRktJR0ZIRXdJRUlHSUVGSUZESUVGSUlHRkRGTEZGRkVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSURKR0lISHlJdklMSXdJTEpHSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGR0ZESUdGQ0lGSUZGREZERXdGTElGSUdJREV3RkdJSUZLRkRFd0lFRktJR0ZIRXdJRUlHSUVGSUZESUVGSUlHRkRGTEZGRkVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SUtJSEl2SkNKRklLSUxJSUpHRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJdkl5SURJR0V3SkZJS0lISUdJR0lMSXhJSkV3SUxJeEV3SkpJSElFRXdKRklISkVKSUlMSUZJSEpGRXdGTElJSURGS0lGSUlJREZESUlJSUlIRkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZHRkRJR0ZDSUZJRkZERkRFd0ZMSUZJR0lERXdGR0lJRktGREV3SUVGS0lHRkhFd0lFSUdJRUZJRkRJRUZJSUdGREZMRkZGRUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Request Rate Limiter

Restricts each user to n requests per second. However, they also built in the ability for a

user to briefly burst above the cap to handle legitimate spikes in usage.

Concurrent Requests Limiter

Restricts each user to n API requests in progress at the same time.

This helps stripe manage the load of their CPU-intensive API endpoints.

Fleet Usage Load Shedder

Stripe divides their traffic into two types: critical API methods and non-critical methods.

An example of a critical method would be creating a charge (charging a customer for

something), while a non-critical method is listing a charge (looking at past charges).

Stripe always reserves a fraction of their infrastructure for critical requests. If the

reservation number is 10%, then any non-critical request over the 90% allocation would

be rejected with a 503 status code.

Worker Utilization Load Shedder

Stripe uses a set of workers to independently respond to incoming requests in parallel. If

workers start getting backed up with requests, then this load shedder will shed lower

priority traffic.

Stripe divides their traffic into 4 categories

● Critical Methods

● POSTs

● GETs

● Test mode traffic (traffic from developers testing the API and making sure

payments are properly processed)

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

If worker capacity goes below a certain threshold, Stripe will begin shedding less-critical

requests, starting from test mode traffic.

Building a rate limiter in practice

There are quite a few algorithms you can use to build a rate limiter. Algorithms include

Token Bucket - Every user gets a bucket with a certain amount of “tokens”. On each

request, tokens are removed from the bucket. If the bucket is empty, then the request is

rejected.

New tokens are added to the bucket at a certain threshold (every n seconds). The bucket

can hold a certain number of tokens, so if the bucket is full of tokens then no new tokens

will be added.

Fixed Window - The rate limiter uses a window size of n seconds for a user. Each

incoming request from the user will increment the counter for the window. If the

counter exceeds a certain threshold, then requests will be discarded.

After the n second window passes, a new window is created.

Sliding Log - The rate limiter track’s every user’s request in a time-stamped log. When a

new request comes in, the system calculates the sum of logs to determine the request

rate. If the request rate exceeds a certain threshold, then it is denied.

After a certain period of time, previous requests are discarded from the log.

Stripe uses the token bucket algorithm to do their rate limiting.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Serving Feature Data at Scale

Lyft uses machine learning extensively throughout their app. They use ML models to

decide the optimal way to match drivers with riders, figure out the price for a ride,

distribute coupons to riders, and a lot more.

In order for the ML models to run, Lyft engineers have to make sure the model’s

features are always available.

The features are the input that an ML model uses in order to get its prediction. If you’re

building a machine learning algorithm that predicts a house’s sale price, some features

might be the number of bedrooms, square footage, zip code, etc.

A core part of Lyft’s Machine Learning Platform is their Feature Serving service, which

makes sure that ML models can get low latency access to feature data.

Vinay Kakade worked on Lyft’s Machine Learning Platform and he wrote a great blog

post on the architecture of Lyft’s Feature Serving service.

Here’s a summary

Lyft’s ML models are computed in two ways.

● Some are computed via batch jobs. Deciding which users should get a 10% off

discount can be computed via a batch job that can run nightly.

● Others are computed in real time. When a user inputs her destination into the

app, the ML model has to immediately output the optimal price for the ride.

Lyft also needs to train their ML models (determine the optimal model parameters to

produce the best predictions) which is done via batch jobs.

The Feature Serving service at Lyft is responsible for making sure all features are

available for both training ML models and for making predictions in production.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSUhJREpHSkhKRUlISHlFS0l3SURJRklLSUxJeElISHlJdklISURKRUl4SUxJeElKRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUl3SXZFd0lJSUhJREpHSkhKRUlIRXdKRklISkVKSUlMSXhJSkV3SUxJeElJSkVJREpGSkdKRUpISUZKR0pISkVJSEV3SURKR0V3SXZKTElJSkdFd0lHRkZGQ0lFSUlGRUlHRkZJRkZGRkVJREVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUl3SXZFd0lJSUhJREpHSkhKRUlIRXdKRklISkVKSUlMSXhJSkV3SUxJeElJSkVJREpGSkdKRUpISUZKR0pISkVJSEV3SURKR0V3SXZKTElJSkdFd0lHRkZGQ0lFSUlGRUlHRkZJRkZGRkVJREVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The service hosts several thousand features and serves millions of requests per minute

with single-digit millisecond latency. It has 99.99%+ availability.

Here’s the architecture.

The core parts of the Feature Serving service are the

● Feature Definitions

● Feature Ingestion

● Feature Processing & Retrieval

Feature Definitions

The features are defined in SQL. The complexity of the definitions can range from a

single query to thousands of lines of SQL comprising complex joins and

transformations.

The definitions also have metadata in JSON that describes the feature version, owner,

validation information, and more.

Feature Data Ingestion

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

For features defined on batch data, Lyft uses Flyte to run regularly scheduled feature

extraction jobs. The job executes SQL against Lyft’s data warehouse and then writes to

the Feature Service.

For real time feature data, Lyft uses Apache Flink. They execute SQL against a stream

window and then write to the Feature Service.

Feature Processing and Retrieval

The Feature Serving service is written in Golang and has gRPC and REST endpoints for

writing and reading feature data.

When feature data is added to the service, it is written in both DynamoDB and Redis

(Redis is used as a write-through cache to reduce read load on DynamoDB).

Lyft uses Dynamo streams to replicate the feature data to Apache Hive (their data

warehouse tool) and Elasticsearch.

The Feature Serving service will then utilize the Redis cache, DynamoDB, Hive and

Elasticsearch to serve requests for feature data.

For real-time ML models that need feature data back quickly, the Feature Serving

service will try to retrieve the feature data from the Redis cache. If there is a cache miss,

then it will retrieve the data from DynamoDB.

For batch-job ML models, they can retrieve the feature data from Hive. If they have an

advanced query then they can also use Elasticsearch. You can read more about how Lyft

uses Elasticsearch (and performance optimizations they’ve made) here.

For more details on their Feature Serving service, you can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SUlJdkpMSkdJSEl5SkVJSkV5SUlJdkpMSkdJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0lJdklMSXhJdUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSUl2SUxJeEl1RXhJREpDSURJRklLSUhFeEl5SkVJSkV5SXhJSEpKSkZFeUZFRkNGREZIRXlGREZFRXlGQ0ZHRXlHTEl4SkdKRUl5SUdKSElGSUxJeElKRXdKSklMSXhJR0l5SkpKRkV4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSUl2SUxJeEl1RXhJREpDSURJRklLSUhFeEl5SkVJSkV5SXhJSEpKSkZFeUZFRkNGREZIRXlGREZFRXlGQ0ZHRXlHTEl4SkdKRUl5SUdKSElGSUxJeElKRXdKSklMSXhJR0l5SkpKRkV4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSURJRklLSUhIeUVLSUZJeUl3SkNKSEpHSUxJeElKRUxFRkhKSkVJTEpHSUxJeElKSHlKQ0l5SXZJTElGSUxJSEpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUlGSUVGQ0ZJRkpJSUZHRXdGTElHRkVJREV3RkdGRUZESURFd0ZMRkhGSklHRXdGQ0ZHRkdGSEZMSUVGRklESUVGR0ZJSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5R0tJTEpJSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUlISXZJREpGSkdJTElGSkZJSElESkVJRklLRXdJeUpDSkdJTEl3SUxKdElESkdJTEl5SXhKRkV3SURKR0V3SXZKTElJSkdFd0lFRkhGSEZISUdJRkZDRkVGQ0ZMRkZGRUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUl3SXZFd0lJSUhJREpHSkhKRUlIRXdKRklISkVKSUlMSXhJSkV3SUxJeElJSkVJREpGSkdKRUpISUZKR0pISkVJSEV3SURKR0V3SXZKTElJSkdFd0lHRkZGQ0lFSUlGRUlHRkZJRkZGRkVJREVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Etsy’s Journey to TypeScript

Salem Hilal is a software engineer on Etsy’s Web Platform team. He wrote a great blog

post on the steps Etsy took to adopt TypeScript.

Here’s a summary

Etsy’s codebase is a monorepo with over 17,000 JavaScript files, spanning many

iterations of the site.

In order to improve the codebase, Etsy made the decision to adopt TypeScript, a

superset of JavaScript with the optional addition of types. This means that any valid

JavaScript code is valid TypeScript code, but TypeScript provides additional features on

top of JS (the type system).

Based on research at Microsoft, static type systems can heavily reduce the amount of

bugs in a codebase. Microsoft researchers found that using TypeScript or Flow could

have prevented 15% of the public bugs for JavaScript projects on Github.

Strategies for Adoption

There are countless different strategies for migrating to TypeScript.

For example, Airbnb automated as much of their migration as possible while other

companies enable less-strict TypeScript across their projects, and add types to their

code over time.

In order to determine their strategy, Etsy had to answer a few questions…

1. How strict do they want their flavor of TypeScript to be? - TypeScript can be

more or less “strict” about checking the types in your codebase. A stricter

configuration results in stronger guarantees of program correctness.

TypeScript is a superset of JavaScript, so if you wanted you could just rename

all your .js files to .ts and still have valid TypeScript, but you would not get

strong guarantees of program correctness.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SUdJSElESkZJRkpFSURJSUpHRXhJRkl5SXdFeUZFRkNGRUZERXlGREZERXlGQ0ZLRXlJSEpHSkZKTEpGRXdJdEl5SkhKRUl4SUhKTEV3SkdJeUV3SkdKTEpDSUhKRklGSkVJTEpDSkdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRkl5SUdJSElESkZJRkpFSURJSUpHRXhJRkl5SXdFeUZFRkNGRUZERXlGREZERXlGQ0ZLRXlJSEpHSkZKTEpGRXdJdEl5SkhKRUl4SUhKTEV3SkdJeUV3SkdKTEpDSUhKRklGSkVJTEpDSkdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd3SXlJeEl5SkVJSEpDSXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl3SUxJRkpFSXlKRkl5SUlKR0V4SUZJeUl3RXlJSEl4RXdKSEpGRXlKRUlISkZJSElESkVJRklLRXlKSkpDRXdJRkl5SXhKR0lISXhKR0V5SkhKQ0l2SXlJRElHSkZFeUZFRkNGREZKRXlGQ0ZMRXlJSklESXlGRUZDRkRGSkl0SURKSUlESkZJRkpFSUxKQ0pHRXhKQ0lHSUlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSUl2SXlKSkV4SXlKRUlKRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0pGRXdJd0lMSUpKRUlESkdJSEV3SURFd0pHSXlJeUl2RXdJSUl5SkVFd0l3SUxJSkpFSURKR0lMSXhJSkV3SkdJeUV3SkdKTEpDSUhKRklGSkVJTEpDSkdFd0lESkdFd0pGSUZJREl2SUhFd0lGSUdGRUZGSUVJSUlISUVGSElGSUZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpHSkxKQ0lISkZJRkpFSUxKQ0pHSXZJREl4SUpFeEl5SkVJSkV5SkdKRklGSXlJeElJSUxJSkVGSkZKR0pFSUxJRkpHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUlGSUVGQ0ZJRkpJSUZHRXdGTElHRkVJREV3RkdGRUZESURFd0ZMRkhGSklHRXdGQ0ZHRkdGSEZMSUVGRklESUVGR0ZJSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

2. How much of their codebase do they want to migrate? - TypeScript is

designed to be easily adopted incrementally in existing JavaScript projects.

Again, TypeScript is a superset of JavaScript, so all JavaScript code is valid

TypeScript. Many companies opt to gradually incorporate TypeScript to help

developers ramp up.

3. How specific do they want the types they write to be? - How accurately should

a type fit the thing it’s describing? For example, let’s say you have a function

that takes in the name of an HTML tag. Should the parameter’s type be a

string? Or, should you create a map of all the HTML tags and the parameter

should be a key in that map (far more specific)?

1.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Based on the previous questions, Etsy’s adoption strategy looked like

1. Make TypeScript as strict as reasonably possible, and migrate the codebase

file-by-file.

2. Add really good types and really good supporting documentation to all of the

utilities, components, and tools that product developers use regularly.

3. Spend time teaching engineers about TypeScript, and enable TypeScript

syntax team by team.

To elaborate more on each of these points…

Gradually Migrate to Strict TypeScript

Etsy wanted to set the compiler parameters for TypeScript to be as strict as possible.

The downside with this is that they would need a lot of type annotations.

They decided to approach the migration incrementally, and first focus on typing

actively-developed areas of the site.

Files that had reliable types were given the .ts file extension while files that didn’t kept

the .js file extension.

Make sure Utilities and Tools have good TypeScript support

Before engineers started writing TypeScript, Etsy made sure that all of their tooling

supported the language and that all of their core libraries had usable, well-defined types.

In terms of tooling, Etsy uses Babel and the plugin babel-preset-typescript that turns

TypeScript into JavaScript. This allowed Etsy to continue to use their existing build

infrastructure. To check types, they run the TypeScript compiler as part of their test

suite.

Etsy makes heavy use of custom ESLint linting rules to maintain code quality.

They used the TypeScript ESLint project to get a handful of TypeScript specific linting

rules.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUlESUVJSEl2SXRKRkV4SUxJeUV5SUdJeUlGSkZFeUlISXhFeUlFSURJRUlISXZFd0pDSkVJSEpGSUhKR0V3SkdKTEpDSUhKRklGSkVJTEpDSkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJSUZJRUZDRklGSklJRkdFd0ZMSUdGRUlERXdGR0ZFRkRJREV3RkxGSEZKSUdFd0ZDRkdGR0ZIRkxJRUZGSURJRUZHRklJSUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SkdKTEpDSUhKRklGSkVJTEpDSkdFd0lISkZJdklMSXhKR0V5SkdKTEpDSUhKRklGSkVJTEpDSkdFd0lISkZJdklMSXhKR0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklJRklFRkNGSUZKSUlGR0V3RkxJR0ZFSURFd0ZHRkVGRElERXdGTEZIRkpJR0V3RkNGR0ZHRkhGTElFRkZJRElFRkdGSUlJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Educate and Onboard Engineers Team by Team

The biggest hurdle to adopting TypeScript was getting everyone to learn TypeScript.

TypeScript works better the more types there are. If engineers aren’t comfortable

writing TypeScript code, fully adopting the language becomes an uphill battle.

Etsy has several hundred engineers, and very few of them had TypeScript experience

before the migration.

The strategy Etsy used was to onboard teams to TypeScript gradually on a team by team

basis.

This had several benefits

● Etsy could refine their tooling and educational materials over time. Etsy

found a course from ExecuteProgram that was great for teaching the basics of

TypeScript in an interactive and effective way. All members of a team would

have to complete that course before they onboarded.

● No engineer could write TypeScript without their teammates being able to

review their code. Individual engineers weren’t allowed to write TypeScript

code before the rest of their team was ready.

● Engineers had plenty of time to learn TypeScript and factor it into their

roadmaps. Teams that were about to start new projects with flexible deadlines

were the first to onboard TypeScript.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElISktJSElGSkhKR0lISkNKRUl5SUpKRUlESXdFeElGSXlJd0V5SUZJeUpISkVKRklISkZFeUpHSkxKQ0lISkZJRkpFSUxKQ0pHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUlGSUVGQ0ZJRkpJSUZHRXdGTElHRkVJREV3RkdGRUZESURFd0ZMRkhGSklHRXdGQ0ZHRkdGSEZMSUVGRklESUVGR0ZJSUlFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Managing Infrastructure with Code at Shopify

Shopify is a tech company that helps businesses build e-commerce stores. If you want to

build an e-commerce store to sell your handcrafted guitars, you could use Shopify to set

up your website, manage customer information, handle payments/banking and more.

Jeremy Cobb is a software engineer at Shopify, where he works on the Contact Center

team. They’re responsible for building the tooling that helps Shopify’s customer service

team deal with all the support inquiries from businesses that use the platform.

He wrote a great blog post on how his team uses Terraform for configuration

management. Terraform is an open source tool that lets you configure your

infrastructure using code.

Here’s a summary

The Contact Center team builds the tooling that Shopify customer service agents use to

handle support requests.

One tool the engineers rely on is Twilio’s TaskRouter service. Twilio is a company that

builds programmable communication tools, so you can use Twilio’s API for sending

emails, text messages, etc.

Shopify uses Twilio TaskRouter to handle routing communication tasks (voice, chat,

etc.) to the most appropriate customer service agent based on a set of routing rules. For

example, users in the US might get sent to a different customer service agent than users

in Canada.

Previously, Shopify would configure these routing rules using Twilio’s website. However,

the complexity of the rules grew and it became too much for a single person to manage.

Having multiple people manage the rules quickly became troublesome because the

website doesn’t provide a clear history of changes or way to roll changes back.

In order to solve this, the Contact Center team decided to use Terraform to manage the

configuration of Twilio Taskrouter.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRklLSXlKQ0lMSUlKTEV4SUhJeElKSUxJeElISUhKRUlMSXhJSkV5SXdJREl4SURJSklIRXdJTEl4SUlKRUlESkZKR0pFSkhJRkpHSkhKRUlIRXdKSklMSkdJS0V3SkdJSEpFSkVJRElJSXlKRUl3RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUZDRkpJSEZDSURGRklHRXdGTEZHRkVGQ0V3RkdGSkZJRkRFd0lFSUdGSEZFRXdGREZGRkpJRkZMSUlGR0ZJSUdGSUZHRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhHSUhKRUpFSURJSUl5SkVJd0h5RUtKRkl5SUlKR0pKSURKRUlIRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZJRkNGSklIRkNJREZGSUdFd0ZMRkdGRUZDRXdGR0ZKRklGREV3SUVJR0ZIRkVFd0ZERkZGSklGRkxJSUZHRklJR0ZJRkdGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhHSkpJTEl2SUxJeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklGQ0ZKSUhGQ0lERkZJR0V3RkxGR0ZFRkNFd0ZHRkpGSUZERXdJRUlHRkhGRUV3RkRGRkZKSUZGTElJRkdGSUlHRklGR0ZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Terraform is an open source tool that lets you write code to manage/configure your

infrastructure/tooling. You can write the code in JSON or in a Terraform-specific

language called HashiCorp Configuration Language (HCL).

In order to use Terraform to manage your infrastructure, you need 3 things.

1. A reliable API - The infrastructure/service (Twilio in Shopify’s case) will need

a reliable API that you can send requests to in order to make changes. If the

only way of configuring your infrastructure is through their website, then it’s

not possible to use any infrastructure as code solutions.

2. A Terraform Provider - In order to consume the infrastructure’s API,

Terraform needs a Provider Plugin, which lets Terraform interface with

external APIs. The Provider Plugin contains CRUD instructions for all the

resources that the Provider manages. For example, the AWS Terraform

Provider Plugin will have CRUD instructions for AWS ec2 resources.All the

major cloud computing companies (GCP, AWS, etc.) maintain their own

Terraform Providers for their service. You can also create your own Providers

to use external APIs that don’t already have a provider available.

3. A Client Library - You’ll also want a separate library that the Terraform

Provider can interface with to make API requests to the external

infrastructure API. You could create a Terraform Provider Plugin that makes

the API calls itself, but this is highly discouraged. It’s better to modularize the

API calls in a separate client library.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

So, Twilio TaskRouter provided a reliable API that the Shopify team could use to

manage their rule configuration.

There was no TaskRouter Terraform Provider available at the time (Twilio has since

developed their own) so the Shopify team built one themselves.

The Provider defines how Terraform should manage Twilio TaskRouter. It contains

resource files for every type of resource in TaskRouter that Terraform has to manage;

each resource file has CRUD instructions that tell Terraform how to manage it.

The Provider also has import instructions that let Terraform import existing

infrastructure. This is useful if you already have infrastructure running and want to start

using Terraform to manage it.

The Shopify team also built a client library that the Terraform Provider would use to

make HTTP calls to Twilio’s API.

Using Terraform

With Terraform set up, Shopify could stop relying on Twilio’s website for configuring

TaskRouter rules and instead write them using HCL (Terraform’s domain specific

language).

This made seeing changes to the infrastructure much easier and allowed Shopify to

integrate software engineering practices like pull requests, code reviews, etc for their

TaskRouter rules.

It also allowed non-developers to start configuring rule changes themselves. Business

and support teams could write rule changes in HCL and create PRs instead of making a

request and waiting for a developer to log onto Twilio’s website and change the config

manually.

For more details on how Shopify created the Provider and on how they use Terraform,

you can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SkdKSklMSXZJTEl5RXlKR0lISkVKRUlESUlJeUpFSXdFd0pDSkVJeUpJSUxJR0lISkVFd0pHSkpJTEl2SUxJeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklGQ0ZKSUhGQ0lERkZJR0V3RkxGR0ZFRkNFd0ZHRkpGSUZERXdJRUlHRkhGRUV3RkRGRkZKSUZGTElJRkdGSUlHRklGR0ZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRklLSXlKQ0lMSUlKTEV4SUhJeElKSUxJeElISUhKRUlMSXhJSkV5SXdJREl4SURJSklIRXdJTEl4SUlKRUlESkZKR0pFSkhJRkpHSkhKRUlIRXdKSklMSkdJS0V3SkdJSEpFSkVJRElJSXlKRUl3RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUZDRkpJSEZDSURGRklHRXdGTEZHRkVGQ0V3RkdGSkZJRkRFd0lFSUdGSEZFRXdGREZGRkpJRkZMSUlGR0ZJSUdGSUZHRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Sharding Databases at Quora

Quora is a social platform where users can post and answer questions on anything. The

website receives more than 600 million visits per month.

Quora relies on MySQL to store critical data like questions, answers, upvotes,

comments, etc. The size of the data is on the order of tens of terabytes (without counting

replicas) and the database gets hundreds of thousands of queries per second.

Vamsi Ponnekanti is a software engineer at Quora, and he wrote a great blog post about

why Quora decided to shard their MySQL database.

MySQL at Quora

Over the years, Quora’s MySQL usage has grown in the number of tables, size of each

table, read queries per second, write queries per second, etc.

In order to handle the increase in read QPS (queries per second), Quora implemented

caching using Memcache and Redis.

However, the growth of write QPS and growth of the size of the data made it necessary

to shard their MySQL database.

At first, Quora engineers split the database up by tables and moved tables to different

machines in their database cluster.

Afterwards, individual tables grew too large and they had to split up each logical table

into multiple physical tables and put the physical tables on different machines.

We’ll talk about how they implemented both strategies.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKREpISXlKRUlESUhJeElKSUxJeElISUhKRUlMSXhJSkV4SkRKSEl5SkVJREV4SUZJeUl3RXlHd0pMSEZIREd2RXdKRklLSURKRUlHSUxJeElKRXdJREpHRXdIREpISXlKRUlERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklGRkVJR0ZHRkdJR0ZMRXdJSEZFRkxGREV3RkdGSEZIRklFd0lFRkxJR0ZLRXdGREZFRkhJSElHRkdGRklHRkdJRklJSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Splitting by Table

As the read/write query load grew, engineers had to scale the database horizontally (add

more machines).

They did this by splitting up the database tables into different partitions. If a certain

table was getting very large or had lots of traffic, they create a new partition for that

table. Each partition consists of a master node and replica nodes.

The mapping from a partition to the list of tables in that partition is stored in

ZooKeeper.

The process for creating a new partition is

1. Use mysqldump (a tool to generate a backup of a MySQL database) to dump

the table in a single transaction along with the current binary log position (the

binary log or binlog is a set of log files that contains all the data modifications

made to the database)

2. Restore the dump on the new partition

3. Replay binary logs from the position noted to the present. This will transfer

over any writes that happened after the initial dump during the restore

process (step 2).

4. When the replay is almost caught up, the database will cutover to the new

partition and direct queries to it. Also, the location of the table will be set to

the new partition in ZooKeeper.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSUZJREl2SURJRUlMSXZJTEpHSkxFRkdLSXlKRUlMSnRJeUl4SkdJREl2SHlFS0pGSUZJREl2SUhIeUl5SkhKR0VMSHlJREl4SUdIeUpJSUhKRUpHSUxJRklESXZIeUpGSUZJREl2SUxJeElKSHlFS0pGSUZJREl2SUhIeUpISkNFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZJRkZFSUdGR0ZHSUdGTEV3SUhGRUZMRkRFd0ZHRkhGSEZJRXdJRUZMSUdGS0V3RkRGRUZISUhJR0ZHRkZJR0ZHSUZJSUlFRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkNJRElGSUtJSEh5SHRJeUl5R3VJSElISkNJSEpFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklGRkVJR0ZHRkdJR0ZMRXdJSEZFRkxGREV3RkdGSEZIRklFd0lFRkxJR0ZLRXdGREZFRkhJSElHRkdGRklHRkdJRklJSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklFeEl3SkxKRkpESXZFeElGSXlJd0V5SUdJeUlGRXlKRUlISUlJd0lESXhFeUZLRXhGQ0V5SUhJeEV5SXdKTEpGSkRJdklHSkhJd0pDRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZJRkZFSUdGR0ZHSUdGTEV3SUhGRUZMRkRFd0ZHRkhGSEZJRXdJRUZMSUdGS0V3RkRGRUZISUhJR0ZHRkZJR0ZHSUZJSUlFRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklFeEl3SkxKRkpESXZFeElGSXlJd0V5SUdJeUlGRXlKRUlISUlJd0lESXhFeUZLRXhGQ0V5SUhJeEV5SXdKTEpGSkRJdklHSkhJd0pDRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZJRkZFSUdGR0ZHSUdGTEV3SUhGRUZMRkRFd0ZHRkhGSEZJRXdJRUZMSUdGS0V3RkRGRUZISUhJR0ZHRkZJR0ZHSUZJSUlFRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

A pro of this approach is that it’s very easy to undo if anything goes wrong. Engineers

can just switch the table location in ZooKeeper back to the original partition.

Some shortcomings of this approach are

● Replication lag - For large tables, there can be some lag where the replica

nodes aren’t fully updated.

● No joins - If two tables need to be joined then they need to live in the same

partition. Therefore, joins were strongly discouraged in the Quora codebase

so that engineers could have more freedom in choosing which tables to move

to a new partition.

Splitting Individual Tables

Splitting large/high-traffic tables onto new partitions worked well, but there were still

issues around tables that became very large (even if they were on their own partition).

Schema changes became very difficult with large tables as they needed a huge amount of

space and took several hours (they would also have to frequently be aborted due to load

spikes).

There were unknown risks involved as few companies have individual tables as large as

what Quora was operating with.

MySQL would sometimes choose the wrong index when reading or writing. Choosing

the wrong index on a 1 terabyte table is much more expensive than choosing the wrong

index on a 100 gigabyte table.

Therefore, engineers at Quora looked into sharding strategies, where large tables could

be split up into smaller tables and then put on new partitions.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Key Decisions around Sharding

When implementing sharding, engineers at Quora had to make quite a few decisions.

We’ll go through a couple of the interesting ones here. Read the full article for more.

Build vs. Buy

Quora decided to build an in-house solution rather than use a third-party MySQL

sharding solution (Vitess for example).

They only had to shard 10 tables, so they felt implementing their own solution would be

faster than having to develop expertise in the third party solution.

Also, they could reuse a lot of their infrastructure from splitting by table.

Range-based sharding vs. Hash-based sharding

There are different partitioning criteria you can use for splitting up the rows in your

database table.

You can do range-based sharding, where you split up the table rows based on whether

the partition key is in a certain range. For example, if your partition key is a 5 digit zip

code, then all the rows with a partition key between 7000 and 79999 can go into one

shard and so on.

You can also do hash-based sharding, where you apply a hash function to an attribute of

the row. Then, you use the hash function’s output to determine which shard the row

goes to.

Quora makes frequent use of range queries so they decided to use range-based sharding.

Hash-based sharding performs poorly for range queries.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSklMSkdJS0pISUVFeElGSXlJd0V5SklJTEpHSUhKRkpGSUxJeUV5SklJTEpHSUhKRkpGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklGRkVJR0ZHRkdJR0ZMRXdJSEZFRkxGREV3RkdGSEZIRklFd0lFRkxJR0ZLRXdGREZFRkhJSElHRkdGRklHRkdJRklJSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSURKRUpHSUxKR0lMSXlJeEh5RUtJR0lESkdJRElFSURKRklIRUxFRkhDSURKRUpHSUxKR0lMSXlJeElMSXhJSkh5SUZKRUlMSkdJSEpFSUxJREVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkZJRkZFSUdGR0ZHSUdGTEV3SUhGRUZMRkRFd0ZHRkhGSEZJRXdJRUZMSUdGS0V3RkRGRUZISUhJR0ZHRkZJR0ZHSUZJSUlFRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

How Quora Shards Tables

So, when Quora has a table that is extremely large, they’ll split it up into smaller tables

and create new partitions that hold each of the smaller tables.

Here are the steps they follow for doing this

1. Data copy phase - Read from the original table and copy to all the shards.

Quora engineers set up N threads for the N shards and each thread copies

data to one shard. Also, they take note of the current binary log position.

2. Binary log replay phase - Once the initial data copy is done, they replay the

binary log from the position noted in step 1. This copies over all the writes

that happened during the data copy phase that were missed.

3. Dark read testing phase - They send shadow read traffic to the sharded table

in order to compare the results with the original table.

4. Dark write testing phase - They start doing dark writes on the sharded table

for testing. Database writes will go to both the unsharded table and the

sharded table and engineers will compare.

If Quora engineers are satisfied with the results from the dark traffic testing, they’ll

restart the process from step 1 with a fresh copy of the data. They do this because the

data may have diverged between the sharded and unsharded tables during the dark

write testing.

They will repeat all the steps from the process until step 3, the dark read testing phase.

They’ll do a short dark read testing as a sanity check.

Then, they’ll proceed to the cutover phase where they update ZooKeeper to indicate that

the sharded table is the source of truth. The sharded table will now serve read/write

traffic.

However, Quora engineers will still propagate all changes back to the original,

unsharded table. This is done just in case they need to switch back to the old table.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

This article was published in 2020 and Quora had successfully sharded 3 large

production tables before the article was written.

For more details, you can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKREpISXlKRUlESUhJeElKSUxJeElISUhKRUlMSXhJSkV4SkRKSEl5SkVJREV4SUZJeUl3RXlHd0pMSEZIREd2RXdKRklLSURKRUlHSUxJeElKRXdJREpHRXdIREpISXlKRUlERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklGRkVJR0ZHRkdJR0ZMRXdJSEZFRkxGREV3RkdGSEZIRklFd0lFRkxJR0ZLRXdGREZFRkhJSElHRkdGRklHRkdJRklJSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Video Delivery at Twitter with HTTP Live

Streaming

Tinder is one of the largest dating apps in the world with more than 75 million monthly

active users.

One of their product features is Swipe Night, which is a choose-your-own-adventure

game built in the app. You watch short video clips (themed around an solve-the-mystery

game) and you make choices on what the main character should do. Tinder will match

you with possible dates based on your choices.

Everyone on the app is watching the same video clips and it’s done live - at 6 p.m. local

time.

Shreyas Hirday is a senior software engineer at Tinder and he wrote a great blog post on

the technology Tinder used to stream the video clips to millions of users simultaneously.

Here’s a summary

There are many ways to deliver video content. The best approach depends on the

tradeoffs you’re making.

In Tinder’s case, they cared about

● Dynamic - Tinder should have the ability to change the video content at any

time.

● Efficient - Memory usage should be minimized since Tinder is being run on

mobile devices.

● Seamless - There should be little to no interruption during playback.

Based on these goals, Tinder decided to use HTTP Live Streaming (HLS), an adaptive

bitrate protocol developed by Apple.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SkdJTEl4SUdJSEpFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0lESXdJTEl4SUpFd0pJSUxJR0lISXlFd0lHSUhJdklMSklJSEpFSkxFd0pHSUtKRUl5SkhJSklLRXdJS0pHSkdKQ0V3SXZJTEpJSUhFd0pGSkdKRUlISURJd0lMSXhJSkV3RkhJREZHSUdGSUlIRkhGR0ZGSUZGS0ZIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZDRktGQ0ZJRklGRElJRXdJR0lHRkVJRkV3RkdGSklJSUZFd0ZLSUlJSUZLRXdGRUZERkhJREZFSUVJSUlFRkNJRklFSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdLSEdIR0hDSHlHdklMSklJSEh5SEZKR0pFSUhJREl3SUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZDRktGQ0ZJRklGRElJRXdJR0lHRkVJRkV3RkdGSklJSUZFd0ZLSUlJSUZLRXdGRUZERkhJREZFSUVJSUlFRkNJRklFSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESUdJREpDSkdJTEpJSUhIeUlFSUxKR0pFSURKR0lISHlKRkpHSkVJSElESXdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkNGS0ZDRklGSUZESUlFd0lHSUdGRUlGRXdGR0ZKSUlJRkV3RktJSUlJRktFd0ZFRkRGSElERkVJRUlJSUVGQ0lGSUVJRUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESUdJREpDSkdJTEpJSUhIeUlFSUxKR0pFSURKR0lISHlKRkpHSkVJSElESXdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkNGS0ZDRklGSUZESUlFd0lHSUdGRUlGRXdGR0ZKSUlJRkV3RktJSUlJRktFd0ZFRkRGSElERkVJRUlJSUVGQ0lGSUVJRUVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Adaptive bitrate streaming just means that the server will have different versions of the

video and each version differs in display size (resolution) and file size (bitrate).

The video player will dynamically choose the best video version based on the user’s

screen size and bandwidth. It will choose the version that minimizes buffering and gives

the best user experience.

An HLS stream will provide a manifest file to the video player, which includes the URL

to each copy of the video as well as the level of bandwidth the user should have in order

to view that level of quality without issue.

Transcoding

Tinder engineers used FFMPEG to transcode MP4 files to HLS streams. They developed

a workflow that had the MP4 file and configurations (resolution, bitrate, frame rate,

etc.) as input and a directory containing the HLS stream as output.

They had multiple configurations for all the different video versions they wanted and

they stored all these video versions in an AWS S3 bucket.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJR0lJd0pDSUhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNGQ0ZLRkNGSUZJRkRJSUV3SUdJR0ZFSUZFd0ZHRkpJSUlGRXdGS0lJSUlGS0V3RkVGREZISURGRUlFSUlJRUZDSUZJRUlFRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Some of the different configuration options they had for the various versions of the

videos were

● Frame rate

● Video Resolution

● Desired Video & Audio Bitrate

● Video Bitrate Variability

● Segment Length

● Optimizations

You can read the article for a discussion on how they configured each of these

parameters.

Validation

The output directory will have a Master Manifest file with information about all the

different video versions in the HLS stream.

The video player will then decide which version to play and whether it should switch to a

lower file-size version based on the information in the manifest file.

Therefore, having an accurate manifest file is very important for the user experience.

Apple provides a Media Stream Validator tool that tests the manifest by simulating a

streaming experience. Tinder uses the results from that test to update the manifest and

ensure accuracy.

Tinder then places the finalized manifest and videos in their production AWS S3 bucket.

Content Access & Delivery

Tinder uses AWS Cloudfront, a content delivery network (CDN), to ensure low-latency

streaming for all their users.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVFeElESkNKQ0l2SUhFeElGSXlJd0V5SUdJeUlGSkhJd0lISXhKR0lESkdJTEl5SXhFeUlLSkdKR0pDSHlJdklMSklJSEh5SkZKR0pFSUhJREl3SUxJeElKRXlKSEpGSUxJeElKSHlJREpDSkNJdklISHlKRkh5SUtKR0pHSkNIeUl2SUxKSUlISHlKRkpHSkVJSElESXdJTEl4SUpIeUlLSXZKRkh5SkdJeUl5SXZKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNGQ0ZLRkNGSUZJRkRJSUV3SUdJR0ZFSUZFd0ZHRkpJSUlGRXdGS0lJSUlGS0V3RkVGREZISURGRUlFSUlJRUZDSUZJRUlFRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

As users from different areas of the US start playing SwipeNight, the CDN will copy the

HLS stream directory from AWS S3 into regional caches so users from that region can

get low latency access.

Measuring Video Performance

Tinder uses 5 key performance indicators (KPIs) to measure how well the streaming

works

1. Perceived start up time for a user

2. Number of stalls during playback

3. Time spent in the stalled state

4. % of video sessions with errors

5. Average quality of the video measured by average bitrate

The Tinder app measures these KPIs along with metadata about the device and its

network connection.

Tinder then works to find the right balance between these 5 KPIs for their use case. For

a traditional streaming app like Netflix, spending 5 seconds in a buffering state might

not be that bad. But a 5 second buffer on a mobile-centric app like Tinder can feel like

an eternity.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SkdJTEl4SUdJSEpFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0lESXdJTEl4SUpFd0pJSUxJR0lISXlFd0lHSUhJdklMSklJSEpFSkxFd0pHSUtKRUl5SkhJSklLRXdJS0pHSkdKQ0V3SXZJTEpJSUhFd0pGSkdKRUlISURJd0lMSXhJSkV3RkhJREZHSUdGSUlIRkhGR0ZGSUZGS0ZIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZDRktGQ0ZJRklGRElJRXdJR0lHRkVJRkV3RkdGSklJSUZFd0ZLSUlJSUZLRXdGRUZERkhJREZFSUVJSUlFRkNJRklFSUVFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Site Reliability Engineering at BlackRock

BlackRock is the world's biggest Asset Manager with more than $10 trillion in assets

under management.

In addition to being an asset manager, BlackRock is also a technology company. They

sell a variety of software to other asset managers, banks, insurance companies, etc.

Their biggest product is Aladdin, the financial industry's most popular software

platform for investment management. Asset managers (banks, pension funds, hedge

funds, etc.) use Aladdin to track profit/loss, manage portfolio risk, make trades, analyze

historical data, etc.

In 2013, the Aladdin platform was used to manage more than 7% of the world's 225

trillion dollars of financial assets (and it's grown since then), so any issues with the

platform can have major consequences on the global financial system.

BlackRock's Site Reliability Engineering team has built a robust telemetry platform to

oversee the health, performance and reliability of Aladdin.

Sudipan Mishra is an engineer on BlackRock's SRE team and he wrote a great blog post

on the architecture of their Telemetry platform.

Here's a summary

Architecture of the Telemetry Platform

All the various components of Aladdin generate large amounts of logs, data, etc.

The Telemetry platform is responsible for aggregating all these reports, displaying them,

and sending alerts to the various Aladdin developers at BlackRock if one of their services

is not performant.

Here's the architecture.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SUVJdklESUZJdUpFSXlJRkl1RXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0lISXZJSEl3SUhKR0pFSkxFd0lESXhJR0V3SXlJRUpGSUhKRUpJSURJRUlMSXZJTEpHSkxFd0lESkdFd0lFSXZJRElGSXVKRUl5SUZJdUV3RkxGTElGSUZGSUlISUdGS0ZJRkhJSElIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUZJSURGSUZFRkVGSUlIRXdGRUZHRkNGRkV3RkdGRUlHRkVFd0ZLRkhJSUZMRXdGSkZKSURGSElISUlGQ0lGRkRJR0lFRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

At the top you have all the various apps, databases, infrastructure and pipelines involved

in the Aladdin platform. All of these report metrics which are then read by the Telemetry

platform's collectors.

From the collector, these metrics go to a Catalog server, an internally developed service

that manages which metrics should be cataloged.

Some metrics might be too noisy/unnecessary so engineers can remove them from the

Telemetry Catalog UI.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The metrics that get passed on are then sent from the Collector to Kafka and eventually

to Prometheus. Prometheus is an open source systems monitoring and alerting toolkit

that was originally developed at SoundCloud.

From Prometheus, the metrics go to InfluxDB, AlertManager and Grafana.

InfluxDB is an open source time series database that BlackRock uses for long-term

storage of all the telemetry metrics.

AlertManager is a tool in the Prometheus toolkit that triggers alerts to BlackRock

engineers based on the metrics.

Grafana is another Prometheus tool that lets engineers produce dashboards and charts

to visualize the telemetry metrics.

Alerting Strategy

Prometheus' AlertManager will send alerts to the various developers working on

Aladdin based on the telemetry. A team should be alerted as quickly as possible if any

incidents have an impact on their service.

However, if the SRE team isn't careful about how they implement alerts then they can

cause things like alarm fatigue.

The SRE team has 4 core principles for their alerts

1. Actionable - Every alert should clearly define what is broken or about to break.

Alerts should also propose the corrective actions to take.

2. Effective - False positives (issuing an alert when there is no incident) and False

negatives (not triggering an alert despite there being an issue) must both be

minimized/eliminated. Otherwise, they can cause mistrust in the alerting system.

3. Impactful - Developers should not be getting alerts for trivial/unimportant

things. Otherwise, developers can get alarm fatigue and accidentally ignore

important alerts.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSkVJeUl3SUhKR0lLSUhKSEpGSHlFS0pGSXlJSUpHSkpJREpFSUhFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklGSUlERklGRUZFRklJSEV3RkVGR0ZDRkZFd0ZHRkVJR0ZFRXdGS0ZISUlGTEV3RkpGSklERkhJSElJRkNJRkZESUdJRUZJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESXZJREpFSXdIeUlJSURKR0lMSUpKSElIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUZJSURGSUZFRkVGSUlIRXdGRUZHRkNGRkV3RkdGRUlHRkVFd0ZLRkhJSUZMRXdGSkZKSURGSElISUlGQ0lGRkRJR0lFRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

4. Transparent - As developers onboard new applications, they should know what

alerts they're going to be getting. They should also have an idea of how many

alerts they'll typically see for that app.

BlackRock evaluated different types of alert systems to meet all of these principles.

You can read about some of the options in Google's SRE book. The book is free and

definitely a must-read if you're interested in SRE.

BlackRock's SRE team decided to go with aMultiwindow, Multi-Burn-Rate Alerting

Strategy. This is #6 on Google's list of alert types in the Google SRE Workbook.

You see how much error is allowable and set various limits around that. As you notice

errors in the telemetry, you "burn" against the allowable error limit. Once you surpass

that allowable limit (and if there are still errors coming) then you send an alert.

BlackRock found this strategy to have a low false-positive rate, a low false-negative rate,

a fast detection time and a very low reset time.

In order to test their alerting strategy, they wrote a script that would let developers

extract metrics from their Prometheus instance for a given time and date range. They

can take those metrics and then backtest their alert strategy to see how many alerts they

would've gotten and whether there would've been any false negatives or false positives.

For more details, you can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkpFSUhFeElKSXlJeUlKSXZJSEV5SkpJeUpFSXVJRUl5SXlJdUV5SURJdklISkVKR0lMSXhJSkV3SXlJeEV3SkZJdkl5SkZFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRklGSUlERklGRUZFRklJSEV3RkVGR0ZDRkZFd0ZHRkVJR0ZFRXdGS0ZISUlGTEV3RkpGSklERkhJSElJRkNJRkZESUdJRUZJRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SUVJdklESUZJdUpFSXlJRkl1RXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0lISXZJSEl3SUhKR0pFSkxFd0lESXhJR0V3SXlJRUpGSUhKRUpJSURJRUlMSXZJTEpHSkxFd0lESkdFd0lFSXZJRElGSXVKRUl5SUZJdUV3RkxGTElGSUZGSUlISUdGS0ZJRkhJSElIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSUZJSURGSUZFRkVGSUlIRXdGRUZHRkNGRkV3RkdGRUlHRkVFd0ZLRkhJSUZMRXdGSkZKSURGSElISUlGQ0lGRkRJR0lFRklFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

How Clubhouse Recommends Rooms

Clubhouse is a social audio application that allows you to create private audio rooms

where you can speak to your friends in the app. You can also create public audio rooms

where other users of the app can join in the audience (and listen in) or as a speaker.

The app experienced viral growth in 2020, peaking in February 2021 with Elon Musk

interviewing Vlad Tenev (the CEO of Robinhood) on the whole GameStop saga. Since

then, however, usage of the Clubhouse app has plummeted and downloads of the app

have been stagnating.

One of the reasons why is because Clubhouse’s room recommendations (the audio

rooms recommended when you open the app) were pretty poor.

Speaking from my personal usage, the room recommendations were not relevant to my

interests so I’d frequently open the app, find nothing interesting and immediately leave.

Akshaan Kakar is a software engineer working on machine learning & discovery at

Clubhouse, and he wrote a great blog post on how Clubhouse built a new

recommendation engine to provide better room recommendations.

Here’s a summary

When you first open the Clubhouse app, you are in the “hallway”. In the hallway are a

bunch of different audio rooms that you can join.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SUZJdkpISUVJS0l5SkhKRklIRXhJRkl5SXdFeUl3SURJdUlMSXhJSkV3SkdJS0lIRXdJS0lESXZJdkpKSURKTEV3SXdJeUpFSUhFd0pFSUhJdklISklJREl4SkdFd0pKSUxKR0lLRXdJd0lESUZJS0lMSXhJSEV3SXZJSElESkVJeElMSXhJSkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZHRkZJSUZISUhGSUlHRXdJSElJRkZGQ0V3RkdGTEZDSUVFd0ZMRkRJSEZLRXdJSUZFRkNGRkZLSUlGSEZLRkxJRUZGRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

At any given time, there are thousands of possible rooms that Clubhouse can

recommend to you in your hallway. Therefore they need to rank the potential rooms and

present you with the top recommendations.

Early on, Clubhouse used simple heuristics to rank the rooms. Heuristics like how many

of your friends were in the room or how closely the room matched with the topics that

you’re following.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Now, Clubhouse uses machine learning with a ranking model that is based on Gradient

Boosted Decision Trees (GBDTs).

If you’re unfamiliar with GBDTs, this is the best article I found that explains them. It

starts from decision trees, goes into ensemble learning (a model that makes predictions

by combining multiple simpler models) and boosting and then goes into GBDTs.

The GBDT model at Clubhouse is based on hundreds of different data points like

whether you spend more time in smaller rooms vs. larger rooms, whether you prefer to

speak or just listen in, how many participants are in the room, etc.

The model is trained as a classifier, where it will create a score for each room between 0

and 1, where 0 means the room is not relevant to you at all while 1 means it’s extremely

relevant.

This classification score is then used to rank the rooms in your hallway.

Complexities

There are many complexities that arise with the machine learning model. Here are a

couple.

Real Time Features

Many of the features (data points) used by the ranking model are slow-moving batch

features that can be computed once every few hours.

However, the model is recommending live rooms that change on a second by second

basis. A celebrity can randomly join a room and that completely changes how the room

should be ranked.

Therefore, engineers also have to incorporate real time data into the recommendation

model.

To do this, they have individual events that fire every time there is a change to a room.

These events are then sent as streaming data to Clubhouse’s recommendation model so

it can incorporate real time information into its recommendations.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEl3SURJRklLSUxJeElISXZJSElESkVJeElMSXhJSkpDSXZKSEpGRXhJRkl5SXdFeUl3SURJRklLSUxJeElIRXdJdklISURKRUl4SUxJeElKRXlJREl4RXdJTEl4SkdKRUl5SUdKSElGSkdJTEl5SXhFd0pHSXlFd0lKSkVJRElHSUxJSEl4SkdFd0lFSXlJeUpGSkdJTEl4SUpFd0lHSUhJRklMSkZJTEl5SXhFd0pHSkVJSElISkZFeUVGR0dJSElGSUxKRklMSXlJeEV3SkdKRUlISUhKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkNGR0ZGSUlGSElIRklJR0V3SUhJSUZGRkNFd0ZHRkxGQ0lFRXdGTEZESUhGS0V3SUlGRUZDRkZGS0lJRkhGS0ZMSUVGRkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkdJREpHSUxKRkpHSUxJRklESXZIeUlGSXZJREpGSkZJTElJSUxJRklESkdJTEl5SXhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkdGRklJRkhJSEZJSUdFd0lISUlGRkZDRXdGR0ZMRkNJRUV3RkxGRElIRktFd0lJRkVGQ0ZGRktJSUZIRktGTElFRkZGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSUhJREpHSkhKRUlISHlFS0l3SURJRklLSUxJeElISHlJdklISURKRUl4SUxJeElKRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZDRkdGRklJRkhJSEZJSUdFd0lISUlGRkZDRXdGR0ZMRkNJRUV3RkxGRElIRktFd0lJRkVGQ0ZGRktJSUZIRktGTElFRkZGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

These real time features are also logged at inference time, so engineers can use the

values later to train future iterations of the model.

Making Fast Inferences

Clubhouse has to run this recommendation model on hundreds of features across

hundreds of rooms. This can be very resource-intensive so they’ve taken steps to make

sure user experience isn’t compromised.

They use a simple memory-backed feature storage mechanism, so fetching model

features is done quickly.

They also spin up lightweight stateless microservices that are solely responsible for

model inference. The server will fetch the feature data and then send it to the

microservice responsible for machine-learning inferences. With this set up,

model-inference is isolated from the core server and it can be scaled up/down

independently.

For more details, read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SUZJdkpISUVJS0l5SkhKRklIRXhJRkl5SXdFeUl3SURJdUlMSXhJSkV3SkdJS0lIRXdJS0lESXZJdkpKSURKTEV3SXdJeUpFSUhFd0pFSUhJdklISklJREl4SkdFd0pKSUxKR0lLRXdJd0lESUZJS0lMSXhJSEV3SXZJSElESkVJeElMSXhJSkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGQ0ZHRkZJSUZISUhGSUlHRXdJSElJRkZGQ0V3RkdGTEZDSUVFd0ZMRkRJSEZLRXdJSUZFRkNGRkZLSUlGSEZLRkxJRUZGRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Continuous Delivery at Airbnb

Airbnb has recently migrated from a Ruby on Rails monolith to a Services-Oriented

Architecture (SOA).

This migration helped Airbnb scale their application, but it also introduced new

challenges.

One of these challenges was around Airbnb's Continuous Delivery process and how they

had to adapt it to the new services architecture.

Jens Vanderhaeghe is a senior software engineer at Airbnb and Manish Maheshwari is a

lead product manager. They wrote a great blog post on Airbnb's new continuous delivery

process and how they migrated.

Here’s a summary

Previously, Airbnb used an internal service called Deployboard to handle their deploys.

Deployboard worked great when Airbnb was using a Ruby on Rails monolith but over

the past few years the company has shifted to a Microservices-oriented Architecture.

A microservices architecture means decentralized deployments where individual teams

have their own pipeline.

Airbnb needed something more templated, so that each team could quickly get a

standard, best-practices pipeline, rather than building their own service from scratch.

Spinnaker is an open source continuous delivery platform that was developed internally

at Netflix and further extended by Google.

Airbnb decided to adopt Spinnaker because it

● was shown to work at Airbnb's scale by Google and Netflix

● allows you to easily plug in custom logic so you can add/change functionality

without forking the core codebase

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKTEl5SkhKR0pIRXhJRUlIRXlKTEdKR3lKR0hHSUdFd0l2SHlGRkdIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklIRkxGRUZKRkVJREZFRXdGRkZFRkxGQ0V3RkdGR0ZLSUZFd0lFSUhJREZKRXdGR0ZMRktJSUZERkpGS0lERktGR0ZGSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJRkl5SXhKR0lMSXhKSEl5SkhKRkV3SUdJSEl2SUxKSUlISkVKTEV3SURKR0V3SURJTEpFSUVJeElFRXdGSUlESUZGQ0ZHRkVJRUlGRkpGS0ZKRklFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSUhGTEZFRkpGRUlERkVFd0ZGRkVGTEZDRXdGR0ZHRktJRkV3SUVJSElERkpFd0ZHRkxGS0lJRkRGSkZLSURGS0ZHRkZJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJTEl4SkdKRUl5SUdKSElGSUxJeElKRXdJR0lISkNJdkl5SkxFd0pDSUxKQ0lISXZJTEl4SUhKRkV3SkdJeUV3SURJTEpFSUVJeElFRXdJSUlGRktGQ0ZHSURJRkZFSURGREZIRkpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSUhGTEZFRkpGRUlERkVFd0ZGRkVGTEZDRXdGR0ZHRktJRkV3SUVJSElERkpFd0ZHRkxGS0lJRkRGSkZLSURGS0ZHRkZJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkNJTEl4SXhJREl1SUhKRUh5RUtKRkl5SUlKR0pKSURKRUlIRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSUhGTEZFRkpGRUlERkVFd0ZGRkVGTEZDRXdGR0ZHRktJRkV3SUVJSElERkpFd0ZHRkxGS0lJRkRGSkZLSURGS0ZHRkZJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

● automates Canary analysis. Canary deployments let you expose the new

version of the app to a small portion of your production traffic and analyze the

behavior for any errors. Spinnaker helps automate this.

Migrating to Spinnaker

Airbnb has a globally distributed team of thousands of software engineers. Getting all of

them to shift to Spinnaker would be a challenge.

They were particularly worried about the Long-tail Migration Problem, where they

could get 80% of teams to switch over to the new deployment system but then struggle

to get the remaining 20% to switch over.

Being forced to maintain two deployment systems can become very costly and is a

reliability/security risk because the legacy system gets less and less

maintenance/attention over time.

To prevent this, Airbnb had a migration strategy that focused on 3 pillars.

1. Focus on Benefits

2. Automated Onboarding

3. Provide Data

Focus on Benefits

Airbnb started by encouraging teams to adopt Spinnaker voluntarily.

They did this by first onboarding a small group of early adopters. They identified a set of

services that were prone to causing incidents and switched those teams over to

Spinnaker.

The automated Canary analysis quickly demonstrated its value to those teams as well as

the other features that Spinnaker provided.

These early adopters ended up becoming evangelists for Spinnaker and spread the word

to other teams at Airbnb organically. This helped increase voluntary adoption.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Automated Onboarding

As more teams started adopting Spinnaker, the Continuous Delivery team at Airbnb

could no longer keep up with demand. Therefore, they started building tooling to

automate the onboarding process to Spinnaker.

They created an abstraction layer on top of Spinnaker that let engineers make changes

to the CD platform with code (IaC). This allowed all continuous delivery configuration to

be source controlled and managed by Airbnb's tools and processes.

Data

The Continuous Delivery team also put a great amount of effort into clearly

communicating the value-add of adopting Spinnaker.

They created dashboards for every service that adopted Spinnaker to show metrics like

number of regressions prevented, increase in deploy frequency, etc.

Final Hurdle

With this 3 pillar strategy, the vast majority of teams at Airbnb had organically switched

over to Spinnaker.

However, adoption began to tail off as the company reached ~85% of deployments on

Spinnaker.

At this point, the team decided to switch strategy to avoid the long-tail migration

problem described above.

Their new plan consisted of

1. Stop the bleeding - Stop any new services/teams from being deployed using the

old continuous delivery platform.

2. Announce deprecation date - Announce a deprecation date for the old continuous

delivery platform and add a warning banner at the top.

3. Send out automated PRs - Airbnb has an in-house refactor tool called

Refactorator that helped with making the switch to Spinnaker easier.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSXhJSUpFSURKRkpHSkVKSElGSkdKSEpFSUhIeUlESkZIeUlGSXlJR0lIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRklIRkxGRUZKRkVJREZFRXdGRkZFRkxGQ0V3RkdGR0ZLSUZFd0lFSUhJREZKRXdGR0ZMRktJSUZERkpGS0lERktGR0ZGSURFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

4. Deprecate and post-deprecation - On deprecation date, they had code in-place

that blocked deploys from the old continuous delivery platform. However, they

had exemptions in-place for emergencies where the old system had to be used.

Conclusion

With this strategy, Airbnb was able to get to the 100% finish line in the migration.

This migration serves as the blueprint for how other infrastructure-related migrations

will be done at Airbnb.

Read the full article for more details.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlJRkl5SXhKR0lMSXhKSEl5SkhKRkV3SUdJSEl2SUxKSUlISkVKTEV3SURKR0V3SURJTEpFSUVJeElFRXdGSUlESUZGQ0ZHRkVJRUlGRkpGS0ZKRklFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZGSUhGTEZFRkpGRUlERkVFd0ZGRkVGTEZDRXdGR0ZHRktJRkV3SUVJSElERkpFd0ZHRkxGS0lJRkRGSkZLSURGS0ZHRkZJREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

How BuzzFeed optimized their Frontend

In June of 2021, Google made a big change to their search algorithm with the Page

Experience Update.

With this update, Google would start using their Core Web Vital metrics as a factor in

their page rankings. Sites with poor Core Web Vitals would rank lower in Google search

results.

Core Web Vitals are a set of standardized metrics that can measure how good of a user

experience a website is giving. They currently focus on 3 metrics

1. Largest Contentful Paint (LCP) - how many seconds does a website take to

show the user the largest content (text or image block) on the screen? A good

LCP score would be under 2.5 seconds.

2. First Input Delay (FID) - how much time does it take from when a user first

interacts with the website (click a link, tap a button, etc.) to the time when the

browser is able to respond to that interaction? A good FID score is under 100

milliseconds.

3. Cumulative Layout Shift (CLS) - How much does a website unexpectedly shift

during its lifespan? A large paywall popping up 10 seconds after the content

loads is an example of an unexpected layout shift that will cause a negative

user experience. You can read about how the CLS score is calculated here.

Google has come up with two metrics: impact fraction and distance fraction,

and they multiply those two to calculate the CLS score.

BuzzFeed is a digital media company that covers content around pop culture, movies, tv

shows, etc. and they get a significant part of their traffic from Google Search (more than

100 million visits per month). Having their articles rank high on the google search

results page is extremely critical to their business.

Edgar Sanchez is a software engineer at BuzzFeed, and he wrote a great 3 part series on

how BuzzFeed fixed their Core Web Vitals to meet Google’s standards. More specifically,

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVKRkV4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUpGSUhJREpFSUZJS0V5SUVJdkl5SUpFeUZFRkNGRUZERXlGQ0ZHRXlJd0l5SkVJSEV3SUdJSEpHSURJTEl2SkZFd0pDSURJSklIRXdJSEpLSkNJSEpFSUxJSEl4SUZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktJREZDRklJRUZFRklJRUV3SUlGTElISURFd0ZHRkZGSUZKRXdJRElGRkxJR0V3RkpJRUZHSUdGQ0ZLSUdGQ0ZLRktGSkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVKRkV4SUpJeUl5SUpJdklIRXhJRkl5SXdFeUpGSUhJREpFSUZJS0V5SUVJdkl5SUpFeUZFRkNGRUZERXlGQ0ZHRXlJd0l5SkVJSEV3SUdJSEpHSURJTEl2SkZFd0pDSURJSklIRXdJSEpLSkNJSEpFSUxJSEl4SUZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktJREZDRklJRUZFRklJRUV3SUlGTElISURFd0ZHRkZGSUZKRXdJRElGRkxJR0V3RkpJRUZHSUdGQ0ZLSUdGQ0ZLRktGSkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSklISUVFeElHSUhKSUV5SXZJRkpDRXlFRkpKSUtJREpHRXdJSEl2SUhJd0lISXhKR0pGRXdJREpFSUhFd0lGSXlJeEpGSUxJR0lISkVJSElHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0lERkNGSUlFRkVGSUlFRXdJSUZMSUhJREV3RkdGRkZJRkpFd0lESUZGTElHRXdGSklFRkdJR0ZDRktJR0ZDRktGS0ZKRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKR0lISUZJS0V4SUVKSEp0SnRJSUlISUhJR0V4SUZJeUl3RXlJTEl3SkNKRUl5SklJTEl4SUpFd0lGSkhJd0pISXZJREpHSUxKSUlIRXdJdklESkxJeUpISkdFd0pGSUtJTElJSkdFd0lESkdFd0lFSkhKdEp0SUlJSElISUdFd0pDSURKRUpHRXdGREV3RktJRUZKSUhJRElHRkVGRkZLRkRJR0lHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0lERkNGSUlFRkVGSUlFRXdJSUZMSUhJREV3RkdGRkZJRkpFd0lESUZGTElHRXdGSklFRkdJR0ZDRktJR0ZDRktGS0ZKRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

how BuzzFeed fixed their CLS score (their LCP and FID scores had already met Google’s

standards).

Here’s a Summary

When Google announced that they’d be factoring Core Web Vitals into PageRank,

engineers at BuzzFeed took note.

They checked their Largest Contentful Paint (LCP), First Input Delay (FID) and

Cumulative Layout Shift (CLS) scores.

Their LCP and FID scores were fine. However, their CLS score was very poor.

Only 20% of visits to BuzzFeed were achieving a “good” experience (a CLS score of less

than 0.1). In order to pass Google’s Core Vitals test, 75% of visits should get a CLS score

of less than 0.1.

The first step in addressing this issue was to improve Observability over CLS, so

engineers could figure out the cause of the issue.

To increase Observability, BuzzFeed used two tools.

1. Synthetic Monitoring - Use Calibre to create a testing environment and run

CLS tests several times a day.

2. Real User Monitoring - Add analytics metrics to the frontend that measure

how much CLS users are experiencing. Hence monitor real users.

BuzzFeed started with Synthetic Monitoring.

They broke their web pages down into independently testable layers to help make tests

more consistent.

● Content Layer - just the page content. So, the article, any quizzes, interactive

embeds etc.

● Feature Layer - Include everything above (page content) but also include

complimentary units like a comment section, polls, trending feed, etc.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSklISUVFeElHSUhKSUV5SUZJdkpGRXlFRkpKSUtJREpHRXdJTEpGRXdJREV3SUpJeUl5SUdFd0lGSXZKRkV3SkZJRkl5SkVJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktJREZDRklJRUZFRklJRUV3SUlGTElISURFd0ZHRkZGSUZKRXdJRElGRkxJR0V3RkpJRUZHSUdGQ0ZLSUdGQ0ZLRktGSkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSklISUVFeElHSUhKSUV5SklJTEpHSURJdkpGRXlFRklGSXlKRUlIRXdKSklISUVFd0pJSUxKR0lESXZKRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktJREZDRklJRUZFRklJRUV3SUlGTElISURFd0ZHRkZGSUZKRXdJRElGRkxJR0V3RkpJRUZHSUdGQ0ZLSUdGQ0ZLRktGSkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRklESXZJTElFSkVJSElESkNKQ0V4SUZJeUl3RXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLSURGQ0ZJSUVGRUZJSUVFd0lJRkxJSElERXdGR0ZGRklGSkV3SURJRkZMSUdFd0ZKSUVGR0lHRkNGS0lHRkNGS0ZLRkpGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

● Full Render Layer - Include everything above (features + content) but also

include ads.

They loaded a couple hundred pages into Calibre and ran tests to figure out what was

causing the CLS issues.

With Synthetic Monitoring, they were quickly able to narrow in on some of the causes

for the issues.

They took a data-driven approach to prioritizing optimizations, and looked at which

page types/units achieved the highest volume of page views. Engineers optimized CLS

on those pages first.

However, even after solving the biggest issues that were apparent from their tests in

Calibre, BuzzFeed was still unable to get their CLS score above Google’s threshold.

Therefore, they turned to Real User Monitoring (RUM).

With RUM, BuzzFeed would lean on their massive audience (more than 100 million

visits per month), their analytics pipeline and the Layout Instability API.

The Layout Instability API provides 2 interfaces for measuring and reporting layout

shifts so you can send that data to your backend server.

BuzzFeed has an in-house analytics pipeline that they use for keeping track of various

types of real user monitoring data, so they hooked the pipeline up with the Layout

Instability API.

The data travels from the frontend through various filters before being stored in

BigQuery (data warehouse from Google). From there, engineers can run analyses or

export the data to analysis tools like Looker and DataStudio.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0lISklJSEl2SXlKQ0lISkVFeEl3SXlKdElMSXZJdklERXhJeUpFSUpFeUlISXhFd0hISEZFeUlHSXlJRkpGRXlISklISUVFeUdESENHTEV5R3ZJREpMSXlKSEpHSHlHTEl4SkZKR0lESUVJTEl2SUxKR0pMSHlHREhDR0xFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLSURGQ0ZJSUVGRUZJSUVFd0lJRkxJSElERXdGR0ZGRklGSkV3SURJRkZMSUdFd0ZKSUVGR0lHRkNGS0lHRkNGS0ZLRkpGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdFSUxJSkhESkhJSEpFSkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLSURGQ0ZJSUVGRUZJSUVFd0lJRkxJSElERXdGR0ZGRklGSkV3SURJRkZMSUdFd0ZKSUVGR0lHRkNGS0lHRkNGS0ZLRkpGR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd2SXlJeUl1SUhKRUh5RUtJRkl5SXdKQ0lESXhKTEVMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0lERkNGSUlFRkVGSUlFRXdJSUZMSUhJREV3RkdGRkZJRkpFd0lESUZGTElHRXdGSklFRkdJR0ZDRktJR0ZDRktGS0ZKRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSXlJeUlKSXZJSEh5R0dJREpHSURIeUhGSkdKSElHSUxJeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktJREZDRklJRUZFRklJRUV3SUlGTElISURFd0ZHRkZGSUZKRXdJRElGRkxJR0V3RkpJRUZHSUdGQ0ZLSUdGQ0ZLRktGSkZHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Engineers looked at page volume and CLS scores to figure out which areas to target and

where they should spend their time optimizing.

Optimizations

Here are some of the common issues BuzzFeed solved that resulted in improvements to

their CLS scores

● Correct Image Sizing - All images should have width/height attributes.

● Static Placeholder for Ads - BuzzFeed has ads that will change dimensions

depending on which ad is being served. They looked at the most common ad

sizes and created static placeholders for them so the page wouldn’t change

suddenly once an ad was loaded.

● Static Placeholders for Embedded Content - BuzzFeed frequently embeds

content from other websites (Tweets, TikTok video, YouTube, etc.). However,

finding the dimensions for static placeholders for embedded content was

quite difficult due to the huge variety of content sizes.

The most difficult to solve was generating static placeholders for embedded content

since many embeds have no fixed dimensions and are difficult to accurately size.

Embedding a tweet, for example, can vary dramatically in height depending on the

content of the tweet and whether it contains an image/video.

BuzzFeed engineers solved this by gathering embed dimensions from all their pages and

collecting them in their analytics pipeline and eventually in BigQuery.

Now, when a page is requested, the rendering layer will check BigQuery for the

dimensions of the embedded content and add correctly-sized placeholders for the

content.

As new pages get published, the dimensions of any third party embeds on those pages

will be loaded into BigQuery.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Result

With these changes, BuzzFeed was able to achieve ~80% of all page views having a good

CLS score. This is a massive improvement from their starting point of ~20% of page

views.

For more details, you can read the full series here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKR0lISUZJS0V4SUVKSEp0SnRJSUlISUhJR0V4SUZJeUl3RXlJTEl3SkNKRUl5SklJTEl4SUpFd0lGSkhJd0pISXZJREpHSUxKSUlIRXdJdklESkxJeUpISkdFd0pGSUtJTElJSkdFd0lESkdFd0lFSkhKdEp0SUlJSElISUdFd0pDSURKRUpHRXdGREV3RktJRUZKSUhJRElHRkVGRkZLRkRJR0lHRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0lERkNGSUlFRkVGSUlFRXdJSUZMSUhJREV3RkdGRkZJRkpFd0lESUZGTElHRXdGSklFRkdJR0ZDRktJR0ZDRktGS0ZKRkdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The Evolution of Benchling’s Search Architecture

Benchling is a cloud platform for biotech research & development. Scientists can use the

platform to keep track of their experiments, collaborate with other teams, and analyze

experiment data.

Over 200,000 researchers use Benchling as a core part of their workflow when running

experiments.

Matt Fox is a software engineer at Benchling and he wrote a great blog post on the

architecture of their Search System.

Here’s a summary

Benchling’s search feature is a core part of the platform. Researchers can use the search

feature to find whatever data they have stored; whether it’s specific experiments, DNA

sequences, documents, etc.

The search system also has full-text search capabilities so you can search for certain

keywords across all the contents that you’ve stored on Benchling.

Benchling’s Initial Search Architecture (2015 - 2019)

The initial architecture is described in the picture above.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUlISXhJRklLSXZJTEl4SUpFeElISXhJSklMSXhJSElISkVJTEl4SUpFeUlERXdJdkl5SXlJdUV3SURKR0V3SkdJS0lIRXdJSEpJSXlJdkpISkdJTEl5SXhFd0l5SUlFd0lFSUhJeElGSUtJdklMSXhJSkpGRXdKRklISURKRUlGSUtFd0lESkVJRklLSUxKR0lISUZKR0pISkVJSEV3SUZGR0lHRkhGRkZFRkpGR0ZIRkVJRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGREZKRkVGS0lERkVJSEV3SUdGSUlJSURFd0ZHSUhGQ0lHRXdJRUlHRkZGR0V3RkZGSUZLRkZJSEZDSUlGRkZKSUlGSEZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The user would interact with the system through a web server written in Flask.

If the user wanted to perform a CRUD action like creating an experiment or deleting a

project, then that would be carried out using the core Postgres database.

If the user wanted to search for something, then that would be done by sending a search

request to an Elasticsearch cluster that was kept synced with the Postgres database.

Benchling managed the syncing with a data pipeline that copied any CRUD updates to

Postgres over to Elasticsearch.

Whenever the user created/read/updated/deleted something in Postgres, then

1. Postgres triggers would trigger if a searchable item was changed (items that

were not searchable did not need to be stored in Elasticsearch). They would

send the changes to a Task Queue (Celery).

2. Celery Workers would determine all the different documents in Elasticsearch

that needed to be updated as a result of the CRUD action. There could be

multiple documents that needed to be updated because the data was

denormalized when stored in Elasticsearch (we’ll talk about why below).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSkVJSElESkdJSEV2SHlKRUlISURJR0V2SHlKSEpDSUdJREpHSUhIeUlESXhJR0h5SUdJSEl2SUhKR0lIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZERkpGRUZLSURGRUlIRXdJR0ZJSUlJREV3RkdJSEZDSUdFd0lFSUdGRkZHRXdGRkZJRktGRklIRkNJSUZGRkpJSUZIRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpDSXlKRkpHSUpKRUlISkZKREl2RXhJeUpFSUpFeUlHSXlJRkpGRXlGREZGRXlKQ0l2SkNJSkpGSkRJdkV3SkdKRUlMSUpJSklISkVFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZERkpGRUZLSURGRUlIRXdJR0ZJSUlJREV3RkdJSEZDSUdFd0lFSUdGRkZHRXdGRkZJRktGRklIRkNJSUZGRkpJSUZIRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSklMSXVJTEV4SXlKQ0lISXhKRkpHSURJRkl1RXhJeUpFSUpFeUpKSUxJdUlMRXlHRklISXZJSEpFSkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkRGSkZFRktJREZFSUhFd0lHRklJSUlERXdGR0lIRkNJR0V3SUVJR0ZGRkdFd0ZGRklGS0ZGSUhGQ0lJRkZGSklJRkhGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSklMSXVJTEV4SXlKQ0lISXhKRkpHSURJRkl1RXhJeUpFSUpFeUpKSUxJdUlMRXlHRklISXZJSEpFSkxFRkhKR3lIRUd1R0hIRUhGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZERkpGRUZLSURGRUlIRXdJR0ZJSUlJREV3RkdJSEZDSUdFd0lFSUdGRkZHRXdGRkZJRktGRklIRkNJSUZGRkpJSUZIRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSUhJeEl5SkVJd0lESXZJTEp0SURKR0lMSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGREZKRkVGS0lERkVJSEV3SUdGSUlJSURFd0ZHSUhGQ0lHRXdJRUlHRkZGR0V3RkZGSUZLRkZJSEZDSUlGRkZKSUlGSEZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

3. All the necessary updates would be pushed to Elasticsearch.

This architecture worked well, but had several pain points with the main one being

keeping Elasticsearch synced with Postgres. There was too much replication lag.

With the Elasticsearch cluster, fast reads were prioritized (so users could get search

results quickly) and data was denormalized when transferred from Postgres.

Denormalization is where you write the same data multiple times in the different

documents instead of using a relation between those documents. This way, you can

avoid costly joins during reads. Data denormalization improves read performance at the

cost of write performance.

The increased cost in write performance is caused by write amplification, where a

change to one row in Postgres expands to many document updates in Elasticsearch since

you have to individually update all the documents that contain that value.

These costlier writes meant more lag between updating the Postgres database and

seeing that update reflected in Elasticsearch. This could be confusing to users as

someone might create a new project but then not see it appear if he searches the project

name immediately after.

The Benchling team was also dealing with a lot of overhead and complexity with

maintaining this search system. They had to maintain both Postgres and Elasticsearch.

Therefore, they decided to move away from Elasticsearch altogether and solely rely on

Postgres.

Moving to Postgres (2019 - 2021)

In 2019, the Benchling team migrated to a new architecture for the Search System, that

was solely based on Postgres.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSUhJeEl5SkVJd0lESXZJTEp0SURKR0lMSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGREZKRkVGS0lERkVJSEV3SUdGSUlJSURFd0ZHSUhGQ0lHRXdJRUlHRkZGR0V3RkZGSUZLRkZJSEZDSUlGRkZKSUlGSEZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The CRUD system remained the same as before, with Postgres being the core database.

However, searches were done as SQL queries against core tables in Postgres, so they

were directly accessing the source of truth (hence no replication lag).

For full-text search queries, they used GIN Indexes, which stands for Generalized

Inverted Indexes. An Inverted Index is the most common data structure you’ll use for

full text search (Elasticsearch uses an inverted index as well). The basic concept is quite

similar to an index section you might find at the back of a textbook where the words in

the text are mapped to their location in the textbook.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSkhJdkl2RXdKR0lISktKR0h5SkZJSElESkVJRklLRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJSEZERkpGRUZLSURGRUlIRXdJR0ZJSUlJREV3RkdJSEZDSUdFd0lFSUdGRkZHRXdGRkZJRktGRklIRkNJSUZGRkpJSUZIRkhFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeEpDSXlKRkpHSUpKRUlISkZKREl2RXhJeUpFSUpFeUlHSXlJRkpGRXlGTEV4RkhFeUlKSUxJeEV3SUxJeEpHSkVJeUV4SUtKR0l3SXZFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkRGSkZFRktJREZFSUhFd0lHRklJSUlERXdGR0lIRkNJR0V3SUVJR0ZGRkdFd0ZGRklGS0ZGSUhGQ0lJRkZGSklJRkhGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSXhKSUlISkVKR0lISUdIeUlMSXhJR0lISktFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkRGSkZFRktJREZFSUhFd0lHRklJSUlERXdGR0lIRkNJR0V3SUVJR0ZGRkdFd0ZGRklGS0ZGSUhGQ0lJRkZGSklJRkhGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

They used Postgres triggers and Celery to asynchronously update the GIN indexes for

full-text search. The replication lag wasn’t much of a problem here because full-text

search use cases didn’t typically require strong consistency (real-time syncing). They

could rely instead on eventual consistency.

This setup worked great for developer productivity (no need to maintain Elasticsearch)

and solved most of the replication lag issues that the team was facing.

However, Benchling experienced tremendous growth during this time period. They

onboarded many new customers and users also started to use Benchling as their main

data platform.

The sheer volume of data pouring into the system was orders of magnitude greater than

they’d seen before.

This caused scaling issues and searches began taking tens of seconds or longer to

execute. Searches were done as SQL queries against Postgres, which made heavy use of

data normalization. This meant costly joins across many tables when doing a search;

hence the slow reads.

Also, the Benchling team faced a lot of difficulty when trying to adapt the system to new

use cases.

Building Back on Elasticsearch (2021+)

The third (and current) iteration of Benchling’s search architecture is displayed below.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkdKRUl5SXhJSkh5SUZJeUl4SkZJTEpGSkdJSEl4SUZKTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGREZKRkVGS0lERkVJSEV3SUdGSUlJSURFd0ZHSUhGQ0lHRXdJRUlHRkZGR0V3RkZGSUZLRkZJSEZDSUlGRkZKSUlGSEZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdISklJSEl4SkdKSElESXZIeUlGSXlJeEpGSUxKRkpHSUhJeElGSkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlIRkRGSkZFRktJREZFSUhFd0lHRklJSUlERXdGR0lIRkNJR0V3SUVJR0ZGRkdFd0ZGRklGS0ZGSUhGQ0lJRkZGSklJRkhGSEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

The team evaluated several options for search systems, but they decided to go back to

Elasticsearch due to its wide industry adoption, mature plugin and text analysis system,

and performant APIs.

They also made some changes to solve some of the issues from the first search system.

The data inconsistency between Postgres and Elasticsearch was the main problem, and

that was due to replication lag. Benchling addressed this in the third iteration by adding

the option to synchronously index the data into Elasticsearch.

With this, the CRUD actions are first copied into Elasticsearch from Postgres and then

the user is given confirmation that the action was successful.

They addressed the write amplification issue (due to the denormalization) by tracking

changes at the column level for their Postgres triggers. This greatly reduced the number

of false positives that were being re-indexed.

They’ve also done performance testing and made some changes to their Elasticsearch

cluster topology so they’re comfortable that the system can handle the load of hundreds

of millions of items.

For more details, you can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUlISXhJRklLSXZJTEl4SUpFeElISXhJSklMSXhJSElISkVJTEl4SUpFeUlERXdJdkl5SXlJdUV3SURKR0V3SkdJS0lIRXdJSEpJSXlJdkpISkdJTEl5SXhFd0l5SUlFd0lFSUhJeElGSUtJdklMSXhJSkpGRXdKRklISURKRUlGSUtFd0lESkVJRklLSUxKR0lISUZKR0pISkVJSEV3SUZGR0lHRkhGRkZFRkpGR0ZIRkVJRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUhGREZKRkVGS0lERkVJSEV3SUdGSUlJSURFd0ZHSUhGQ0lHRXdJRUlHRkZGR0V3RkZGSUZLRkZJSEZDSUlGRkZKSUlGSEZIRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

How the BBC uses Serverless

The BBC is the national broadcaster for the UK and is the world’s oldest and largest

national broadcaster with more than 20,000 employees.

The website operates at a massive scale, with over half of the UK’s population using the

site every week (along with tens of millions of additional users from across the world).

They have content in 44 different languages and have hundreds of different page types

(news articles, food recipes, videos, etc.).

Until a few years ago, the website was written in PHP and hosted on two datacenters

near London. However, the engineering team has rebuilt the website on AWS and used

newer technologies like ReactJS.

The website relies heavily on Functions as a Service (FaaS) for scaling, specifically AWS

Lambda functions.

Jonathan Ishmael is the Lead Technical Architect at the BBC, and he wrote a great series

of blog posts on why the BBC chose serverless and how their backend works.

Here’s a summary

Before getting into the choice of serverless, it’s important to get some context about the

type of workloads that the BBC website has to serve.

Traffic to the website can fluctuate greatly depending on current events, social media

traffic, etc. These events can be predictable (a traffic spike during a national election)

but they can also be random.

During the 2019 London Bridge attack, requests for the BBC’s coverage of the event

resulted in a 3x increase in traffic in a single minute (4,000 req/s to 12,000 req/s).

Within the next few minutes, traffic doubled again (from 12,000 req/s to 20,000 req/s).

If there’s an unexpected, consequential event then the BBC’s article about it can quickly

start trending on social media. This brings a massive amount of traffic.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdFR0VHRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGSkZKSUdGSkZGSUVJRkV3RkRJR0ZLRkNFd0ZHSUhGQ0ZLRXdJRElERklJRUV3RkpJSUlJRkZGS0ZGRkVGR0ZDRktGS0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSkhJeElGSkdJTEl5SXhIeUlESkZIeUlESHlKRklISkVKSUlMSUZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGSkZKSUdGSkZGSUVJRkV3RkRJR0ZLRkNFd0ZHSUhGQ0ZLRXdJRElERklJRUV3RkpJSUlJRkZGS0ZGRkVGR0ZDRktGS0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESEpIRkh5R3ZJREl3SUVJR0lERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESEpIRkh5R3ZJREl3SUVJR0lERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SUVJRUlGRXdJR0lISkZJTElKSXhFd0lISXhJSklMSXhJSElISkVJTEl4SUpFeUlHSUhJdklMSklJSEpFSUxJeElKRXdJRUlFSUZFd0l5SXhJdklMSXhJSEV3SkhKRklMSXhJSkV3SkZJSEpFSklJSEpFSXZJSEpGSkZFd0ZKRkxJR0ZHSURGTElFRkNJR0lERkRGSUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGSkZKSUdGSkZGSUVJRkV3RkRJR0ZLRkNFd0ZHSUhGQ0ZLRXdJRElERklJRUV3RkpJSUlJRkZGS0ZGRkVGR0ZDRktGS0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUZFRkNGREZMSHlHdkl5SXhJR0l5SXhIeUdFSkVJTElHSUpJSEh5SkZKR0lESUVJRUlMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGSkZKSUdGSkZGSUVJRkV3RkRJR0ZLRkNFd0ZHSUhGQ0ZLRXdJRElERklJRUV3RkpJSUlJRkZGS0ZGRkVGR0ZDRktGS0ZERUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

It’s extremely important that the BBC website be able to quickly scale up with these

traffic patterns, so that people can get access to information during an emergency.

The BBC’s Backend

The BBC’s backend stack can be divided into several layers.

Traffic Management Layer

All traffic to the BBC website goes to the Global Traffic Manager, which is a web server

based on Nginx. This layer handles thousands of requests per second and is run on AWS

EC2 instances.

The layer handles caching, sanitizing requests and forwarding traffic to the relevant

backend services.

The EC2 instances run with 50% reserve capacity available for handling bursts of traffic.

They don’t have a CPU intensive workload, so AWS autoscaling works well for high

traffic events.

Web Rendering Layer

The BBC uses ReactJS for their website. They make use of React’s server-side rendering

feature to reduce the initial page load time when someone first visits the website. The

Web Rendering layer is where the server side rendering happens.

This rendering process is quite compute-intensive, which means a ton of strain in

scenarios where the amount of traffic to the BBC website shoots up (the rendering layer

becomes the stress point). AWS EC2 autoscaling typically takes a few minutes to add

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SUpJTEl4SktFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkpGSklHRkpGRklFSUZFd0ZESUdGS0ZDRXdGR0lIRkNGS0V3SURJREZJSUVFd0ZKSUlJSUZGRktGRkZFRkdGQ0ZLRktGREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkhKR0l5SkZJRklESXZJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkpGSklHRkpGRklFSUZFd0ZESUdGS0ZDRXdGR0lIRkNGS0V3SURJREZJSUVFd0ZKSUlJSUZGRktGRkZFRkdGQ0ZLRktGREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRUlISURJRkpHSXRKRkV4SXlKRUlKRXlJR0l5SUZKRkV5SkVJSElESUZKR0V3SUdJeUl3RXdKRklISkVKSUlISkVFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRUlISURJRkpHSXRKRkV4SXlKRUlKRXlJR0l5SUZKRkV5SkVJSElESUZKR0V3SUdJeUl3RXdKRklISkVKSUlISkVFeElLSkdJd0l2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESkhKR0l5SkZJRklESXZJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkpGSklHRkpGRklFSUZFd0ZESUdGS0ZDRXdGR0lIRkNGS0V3SURJREZJSUVFd0ZKSUlJSUZGRktGRkZFRkdGQ0ZLRktGREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

capacity, which is too slow for scaling the rendering layer (the amount of traffic to the

site can double in less than a minute).

Therefore, the BBC relies on AWS Lambda functions for the rendering as they can scale

up much faster. Approximately 2,000 lambdas run every second to create the BBC

website and AWS will automatically provision more compute when there’s a burst of

traffic (there will be a small cold start time discussed below).

Business Layer

The Rendering Layer focuses solely on presentation, and it fetches data through a REST

API provided by the Business Layer.

The BBC has a wide variety of content types (TV shows, movies, weather forecasts, etc.)

and each one has different data / business logic.

The Business Layer is responsible for taking data from all the various BBC backend

systems and transforming it into a common data model for the Web Rendering layer.

The REST API is run on EC2 instances while Lambda functions are used for the

compute-intensive task of transforming data from all the different systems into a

common data model.

The EC2 instances also handle intermediate caching to reduce load on the Lambda

functions.

Platform and Content Production

The last two layers provide a wide range of services and tools that allow content to be

created, controlled, stored and processed.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESEpIRkh5R3ZJREl3SUVJR0lERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSUhKQ0pFSUhKRklISXhKR0lESkdJTEl5SXhJREl2SHlKRkpHSURKR0lISHlKR0pFSURJeEpGSUlJSEpFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Optimizing Performance

The BBC team wanted to make sure they were optimizing their serverless functions to

reduce cost and improve user experience. We’ll go through a couple of the things they

did.

Caching

As discussed above, the BBC has two layers that rely on serverless functions: the web

rendering layer and the Business Layer.

However, they made sure to put in an intermediate caching layer between the two

serverless functions to avoid the rendering functions calling any business logic functions

directly.

If they didn’t, then the rendering function would be sitting idle while the business logic

function was working. Serverless functions are billed by GB-seconds (number of seconds

your function runs for multiplied by the amount of RAM consumed), so any time spent

idle is money being wasted.

The caching layers ensure that most business logic serverless functions can complete in

under 50 milliseconds, reducing idle time for the rendering function.

Memory Profile

When you’re working with Lambda functions, the main configurable parameter is the

amount of RAM each Lambda instance has (from 128 MB to 10 GB).

The amount of memory you select will impact the available vCPUs, which impacts your

response time.

Although the BBC only needed ~200 megabytes for their React app, they found that 1

gigabyte of RAM gave them the optimal price/performance point.

Cold Start Times

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSUl2SURKSUlMSXlJRkl5SkNJSEpGRXhJRkl5SXdFeUpKSUtJREpHRXdJTEpGRXdJREV3SUpJRUV3SkZJSElGSXlJeElHRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERkpGSklHRkpGRklFSUZFd0ZESUdGS0ZDRXdGR0lIRkNGS0V3SURJREZJSUVFd0ZKSUlJSUZGRktGRkZFRkdGQ0ZLRktGREVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

When you make the first request to a serverless function, your cloud provider has to

copy your code bundle to a physical machine and launch a container for you. This

process is referred to as a cold start and you’ll have to wait for the Lambda function to

spin up before you can get your response.

After the request is done, the cloud platform will keep the instance alive for 15-20

minutes (this differs based on provider) so any subsequent requests will not have to deal

with a cold start time.

However, if you have a sudden burst in traffic, your cloud provider will have to spin up

new instances to run your functions on. This means additional cold start times

(although it’s still faster than using EC2 autoscaling).

Factors that impact the cold start time are RAM allocation per Lambda function

(discussed above), size of the code bundle, time taken to invoke the runtime associated

with your code (you can write your function in Java, Go, Python, JavaScript and more),

etc.

You are not charged for any of the compute that happens during the cold start process,

so engineers at the BBC took advantage of this. They used that time to establish network

connections to all the APIs that they needed and also loaded any JavaScript

requirements into memory.

Additionally, they optimized the RAM allocated per Lambda to minimize cold start time.

They found that a 512 mb memory profile increased cold start time by 3x over a 1

gigabyte memory profile, which is part of the reason why they went with 1 gb of RAM

allocated.

They ended up with an average cold start time of ~250 milliseconds, with a peak of 1-2

seconds.

Performance

The BBC is running over 100 million serverless function invocations per day with 90%

of the invocations taking less than 220 milliseconds (for the rendering functions).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

In terms of scalability, they’ve been able to go from a cold system at 0 requests/sec (with

everything uncached) to 5,000 requests/sec within a few minutes.

For more details, you can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SUVJRUlGRXdJR0lISkZJTElKSXhFd0lISXhJSklMSXhJSElISkVJTEl4SUpFeUl5SkNKR0lMSXdJTEpGSUxJeElKRXdKRklISkVKSUlISkVJdklISkZKRkV3SUlJeUpFRXdJRUlFSUZFd0l5SXhJdklMSXhJSEV3RkRGREZLSUlJSEZFSUZGQ0ZHSUVJSElFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZKRkpJR0ZKRkZJRUlGRXdGRElHRktGQ0V3RkdJSEZDRktFd0lESURGSUlFRXdGSklJSUlGRkZLRkZGRUZHRkNGS0ZLRkRFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

How Twitch does Chaos Engineering

Chaos Engineering is a methodology pioneered at Netflix for testing the resiliency of

your system.

You simulate different failures across your system using tools like Chaos Monkey,

Gremlin, AWS Fault Injection Simulator, etc. and then measure what the impact is.

These tools allow you to set up simulated faults (like blocking outgoing DNS traffic,

shutting down virtual machines, packet loss, etc.) and then schedule them to run

randomly during a specific time window.

Chaos Engineering is meant to be done as a scientific process, where you follow 4 steps.

1. Define how your system should behave under normal circumstances using

quantitative measurements like latency percentiles, error rates, throughput,

etc.

2. Create a control group and an experiment group. In an ideal implementation,

you are running experiments directly on a small portion of real user traffic.

Otherwise, use the staging environment.

3. Simulate failures that reflect real world events like server crashes, severed

network connections, etc.

4. Compare the difference in your quantitative measurements between the

control and experimental group.

Typically, Chaos Engineering is used for measuring the resiliency of the backend

(usually service-oriented architectures).

However, engineers at Twitch decided to use Chaos Engineering techniques to test their

front-end. The question they wanted to answer was “If some part of their overall system

fails, how does the front-end behave and what do end users see?”

Joaquim Verges is a senior developer at Twitch and he wrote a great blog post on

Twitch’s process for chaos testing.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKQ0pFSUxJeElGSUxKQ0l2SUhKRkl5SUlJRklLSURJeUpGRXhJeUpFSUpFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGREZKSURJR0ZMRkpJRkV3SURGS0lGRkxFd0ZHRktGRkZFRXdJRElFRkpGRkV3RkZJSElGRkZJSEZHSUlJSEZJSUZGRkZGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSUhKQ0l2SXlKTEl3SUhJeEpHSHlJSEl4SklJTEpFSXlJeEl3SUhJeEpHRUZIRkpHSURJSklMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGREZKSURJR0ZMRkpJRkV3SURGS0lGRkxFd0ZHRktGRkZFRXdJRElFRkpGRkV3RkZJSElGRkZJSEZHSUlJSEZJSUZGRkZGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSUhKRUpJSUxJRklIRXdJeUpFSUxJSEl4SkdJSElHSHlJREpFSUZJS0lMSkdJSElGSkdKSEpFSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlGRkRGSklESUdGTEZKSUZFd0lERktJRkZMRXdGR0ZLRkZGRUV3SURJRUZKRkZFd0ZGSUhJRkZGSUhGR0lJSUhGSUlGRkZGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SkdKSklMSkdJRklLRXhKR0pJRXlJSEl4RXlGRUZDRkVGRUV5RkNGREV5RkRGQ0V5SURKSEpHSXlJd0lESkdJSElHRXdJRklLSURJeUpGRXdKR0lISkZKR0lMSXhJSkV3SXlJeEV3SkdJS0lIRXdJSUpFSXlJeEpHRXdJSEl4SUdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGREZKSURJR0ZMRkpJRkV3SURGS0lGRkxFd0ZHRktGRkZFRXdJRElFRkpGRkV3RkZJSElGRkZJSEZHSUlJSEZJSUZGRkZGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Here’s a summary

Twitch is a live streaming website where content creators can stream live video to an

audience. They have millions of broadcasters and tens of millions of daily active users.

At any given time, there’s more than a million users on the site.

Twitch uses a services-oriented architecture for their backend and they have hundreds

of microservices.

The front end clients use a single GraphQL API to communicate with the backend.

GraphQL allows frontend devs to use a query language to request the exact data they’re

looking for rather than calling a bunch of different REST endpoints.

The GraphQL server has a resolver layer that is responsible for calling the specific

backend services to get all the data requested.

The most common fault that happens for their system is one of their microservices

failing. In that scenario, GraphQL will forward partial data to the client and it’s the

client’s job to handle the partial data gracefully and provide the best degraded

experience possible.

Engineers at Twitch decided to use Chaos Engineering to test these microservice failure

scenarios.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJREpDSUtIREd2RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZERkpJRElHRkxGSklGRXdJREZLSUZGTEV3RkdGS0ZGRkVFd0lESUVGSkZGRXdGRklISUZGRklIRkdJSUlIRklJRkZGRkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSUhKQ0pFSUhKRklISXhKR0lESkdJTEl5SXhJREl2SHlKRkpHSURKR0lISHlKR0pFSURJeEpGSUlJSEpFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZERkpJRElHRkxGSklGRXdJREZLSUZGTEV3RkdGS0ZGRkVFd0lESUVGSkZGRXdGRklISUZGRklIRkdJSUlIRklJRkZGRkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElESkNJeUl2SXZJeUlKSkVJREpDSUtKREl2RXhJRkl5SXdFeUlHSXlJRkpGRXlJREpDSXlJdkl2SXlFd0pGSUhKRUpJSUhKRUV5SUdJREpHSURFeUpFSUhKRkl5SXZKSUlISkVKRkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZERkpJRElHRkxGSklGRXdJREZLSUZGTEV3RkdGS0ZGRkVFd0lESUVGSkZGRXdGRklISUZGRklIRkdJSUlIRklJRkZGRkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

They created Chaos Mode, where they could pass an extra header to GraphQL calls in

their staging environment. Within the header, they pass the name of the backend service

that they want to simulate a failure for.

The GraphQL resolver layer will read this header and stop any call to that service.

The main issue with this approach was that Twitch would need to send the name of the

backend service within the GraphQL header. Therefore, they would have to maintain a

list of all the various backend services to test.

Features and services are constantly changing, so manually mapping specific services to

test was not scalable. They needed a way for the test suite to “discover” the services that

they should be simulating failures for.

To solve this, Twitch added a debug header in their GraphQL calls which enabled

tracing at the GraphQL resolver layer. The resolvers record any method call done to

internal service dependencies, and then send the information back to the client in the

same GraphQL call.

From there, the client can extract the service names that were involved and use that as

input for the Chaos Testing suite.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSkpFSURKQ0lLSkRJdkV4SXlKRUlKRXlJdklISURKRUl4RXlJSEpLSUhJRkpISkdJTEl5SXhFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGREZKSURJR0ZMRkpJRkV3SURGS0lGRkxFd0ZHRktGRkZFRXdJRElFRkpGRkV3RkZJSElGRkZJSEZHSUlJSEZJSUZGRkZGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Visualization

Twitch has many end-to-end tests for all their clients that test the various user flows

(navigating to a screen, logging in, sending a chat message, etc.)

They try each of these tests with all of the Chaos Mode microservice failures and see

whether the test was successful. Then, they aggregate all the Chaos Mode test results for

each user flow and use that to calculate a resilience score for that particular user action

test.

Resilience scores are displayed on a Dashboard where it’s easy to see any anomalies in

performance. They run Chaos Mode tests every night for their Android, iOS and Web

clients.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Next Steps

Twitch has been able to use this testing tool to boost resilience across all their clients.

Next they want to add the ability to test secondary microservices (services that are called

from another service rather than just testing services that are called directly from the

GraphQL resolver layer).

They also want to add the ability to simulate failures for multiple services at once.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SkdKSklMSkdJRklLRXhKR0pJRXlJSEl4RXlGRUZDRkVGRUV5RkNGREV5RkRGQ0V5SURKSEpHSXlJd0lESkdJSElHRXdJRklLSURJeUpGRXdKR0lISkZKR0lMSXhJSkV3SXlJeEV3SkdJS0lIRXdJSUpFSXlJeEpHRXdJSEl4SUdFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGREZKSURJR0ZMRkpJRkV3SURGS0lGRkxFd0ZHRktGRkZFRXdJRElFRkpGRkV3RkZJSElGRkZJSEZHSUlJSEZJSUZGRkZGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

How PayPal uses Graph Databases for Fraud

Prevention

PayPal is a fintech company that lets users transfer money online. They have over 400

million active consumers and merchants on the platform and they process thousands of

payment transactions every minute.

Detection and prevention of fraud is one of the biggest problems fintech companies have

to deal with and PayPal is no exception.

In order to do this, PayPal relies on a graph database. Quinn Zuo is the head of AI/ML

Product Management at PayPal and he wrote a great blog post on how PayPal does this.

Here’s a summary

A graph is a collection of nodes (vertices) and relationships (edges) between those

nodes.

A graph database management system (graph database) gives you a durable way to store

your graph along with an interface to easily perform create/read/update/delete (CRUD)

operations on the graph.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SkNJREpMSkNJREl2RXdKR0lISUZJS0V5SUtJeUpKRXdKQ0lESkxKQ0lESXZFd0pISkZJSEpGRXdKRUlISURJdkV3SkdJTEl3SUhFd0lKSkVJREpDSUtFd0lHSURKR0lESUVJREpGSUhFd0lESXhJR0V3SUpKRUlESkNJS0V3SURJeElESXZKTEpGSUxKRkV3SkdJeUV3SUlJTElKSUtKR0V3SUlKRUlESkhJR0V3RkxGSUlERkVJRUZMRkRGS0ZJRkRGTElERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZMSUhGR0lFRktJSElIRXdGSEZMRktGR0V3RkdGRUZERktFd0ZMRkZGTElERXdGQ0ZKRklGQ0ZKSUZGSUZLRkZJREZESUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJREpDSUtIeUVLSURJRUpGSkdKRUlESUZKR0h5SUdJREpHSURIeUpHSkxKQ0lIRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Relationships are first class citizens in graph databases, so traversing through nodes and

computing various graph algorithms (PageRank, Connected Components, etc.) is much

easier to implement compared to doing it with SQL queries on a relational database. It

can also be significantly faster than a relational database depending on how the graph

database is built.

You can view a comparison of querying for data between SQL and Cyper (Neo4J’s graph

query language) here.

If you have a graph database with data about actors and the movies they were involved

with, then an SQL query for all the directors of Keanu Reeves movies might look like

this…

A Cypher query would be much shorter and easier to interpret…

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSURJSklISEVJREl4SXVFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSXlJd0pDSXlJeElISXhKR0h5RUtJSkpFSURKQ0lLSHlKR0lLSUhJeUpFSkxFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGTElIRkdJRUZLSUhJSEV3RkhGTEZLRkdFd0ZHRkVGREZLRXdGTEZGRkxJREV3RkNGSkZJRkNGSklGRklGS0ZGSURGRElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJeElISXlGR0l0RXhJRkl5SXdFeUlKSkVJREpDSUtJSklMSkZKR0pGRXlJRkpMSkNJS0lISkVFd0pJSkZFd0pGSkRJdkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZMSUhGR0lFRktJSElIRXdGSEZMRktGR0V3RkdGRUZERktFd0ZMRkZGTElERXdGQ0ZKRklGQ0ZKSUZGSUZLRkZJREZESUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Properties

When looking at graph database technologies, there are two properties you should be

examining: the underlying storage (native vs. non-native storage) and the processing

engine (native vs. non-native processing).

Underlying Storage

This is the underlying structure of the database that contains the graph data.

It can be either native or non-native. Native graph storage means that it’s been built

specifically for storing graph-like data, which means more efficiency when running

graph queries. You can see this with graph databases like Neo4j. For non-native storage,

the graph database will serialize the graph data into relational, key-value,

document-oriented or some other general-purpose data store.

The benefit of non-native graph storage is that you can build your graph database on a

battle-tested backend like Postgres or Cassandra where the scaling characteristics are

well understood. You can take advantage of a Graph API without having to rebuild all

the sharding, replication, redundancy, etc.

PayPal uses Aerospike as the underlying storage for their graph database. Aerospike is

an open source, distributed, key value database.

The Processing Engine

The processing engine runs database operations on your graph, and can be split into

native or non-native processing.

The key difference between native and non-native processing is index-free adjacency.

Index-free adjacency means that your graph doesn’t have to work with a database index

to hop from any node to its neighboring nodes. Each node has direct addresses to all of

its neighboring nodes. Native graph processing means using index-free adjacency.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd4SUhJeUZHSXRFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESUhKRUl5SkZKQ0lMSXVJSEh5RUtJR0lESkdJRElFSURKRklIRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESUVJREpGSUhIeUlMSXhJR0lISktFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

On the other hand, if you’re using a relational database as the underlying storage and

you need to first check a database index to find the location of a neighboring node, then

you do not have native graph processing.

Here’s a great article that delves into index-free adjacency.

Graph Database

PayPal has a two-sided network with buyers and merchants who are sending each other

transactions.

They encode this network as a graph with buyers/sellers modeled as vertices in the

graph.

Edges are connections between the vertices. Examples of potential connections are

sending a payment, sharing the same IP, having the same home address, etc.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESUVJREpGSUhIeUlMSXhJR0lISktFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l3SUZJRkpFSUhJREpFSkxFeEl3SUhJR0lMSkhJd0V4SUZJeUl3RXlJS0l5SkpFd0pHSXlFd0lISktKQ0l2SURJTEl4RXdJTEl4SUdJSEpLRXdJSUpFSUhJSEV3SURJR0l0SURJRklISXhJRkpMRXdKR0l5RXdKTEl5SkhKRUV3SXdJREl4SURJSklISkVFd0ZESURGS0lIRklGS0lISUZGSUZJRkdJREVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGTElIRkdJRUZLSUhJSEV3RkhGTEZLRkdFd0ZHRkVGREZLRXdGTEZGRkxJREV3RkNGSkZJRkNGSklGRklGS0ZGSURGRElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

An Overview of PayPal’s Graph Platform

PayPal’s graph platform is an integrated platform that consists of real-time, interactive,

and analytics graph technology stacks.

The real-time graph platform will return graph query results very quickly (sub-second).

The returned query results can be used in machine learning models for immediate fraud

prevention. If a malicious actor tries to create a new PayPal account after getting

banned, the real-time graph platform can help identify that user and block his account

right after he creates it.

The Interactive graph platform serves use cases where the query latency can be within a

few seconds or minutes. This is useful for graph visualization and is suitable for

investigations done by PayPal’s fraud-prevention teams.

The analytics graph platform is used to uncover unknown patterns using graph

algorithms and training graph ML models. It’s built on HPCs so that training and

algorithms can be run quickly whereas the interactive and real-time platforms are both

built on commodity servers.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdLSUxJSklLRXdKQ0lISkVJSUl5SkVJd0lESXhJRklISHlJRkl5SXdKQ0pISkdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Real Time Graph Database

The real time graph platform is used to query the graph database and identify potential

fraudulent activities immediately.

Some of the core requirements for PayPal’s Real Time Graph Platform are

● Customizable high performance graph query APIs

● Sub-second level query latency and optimization

● Seconds level data freshness (near real-time update)

● Horizontal scalability with fault tolerance

● Million queries per second throughput

● Flexible data backfill from offline to online

Here’s the architecture for the Real-Time Graph Stack. You can view a larger image

here.

The storage backend for the database uses Aerospike and there’s a Write Path and a

Read Path built around it to perform CRUD operations on the database.

Write Path

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lMSkVJeUV4SXdJSElHSUxKSEl3RXhJRkl5SXdFeUl3SURKS0V5RkRGR0ZDRkNFeUZERXRHRkd5RkVKRUZLRklHd0p0SEZISkZESUlKREZLRkNKQ0l0SUlGRkhHSUxIREV4SkNJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZMSUhGR0lFRktJSElIRXdGSEZMRktGR0V3RkdGRUZERktFd0ZMRkZGTElERXdGQ0ZKRklGQ0ZKSUZGSUZLRkZJREZESUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

For the write path, offline data loading (in the lower part of the image above) and

event-based data updates are abstracted into a single Graph Data Process Service.

The offline channel is set up for loading snapshots of the data and supports daily or

weekly updates.

Event-based, near real-time data comes from a variety of production data services at

PayPal. These data sources have been abstracted as events/messages in Kafka. The

Graph Data Process Service consumes those messages to create new vertices and edges

in the graph database.

Read Path

The Graph Query Service is responsible for handling reads from the underlying

Aerospike data store. It provides template APIs that the upstream services (for running

the ML models) can use.

Those APIs wrap Gremlin queries that run on a Gremlin Layer. Gremlin is an open

source graph query language that can be used for OLTP and OLAP traversals. It’s part of

Apache TinkerPop, which is a popular graph computing framework.

The Gremlin layer converts the queries into optimized Aerospike queries, where they

can be run against the underlying storage.

For more details on PayPal’s Graph viewer and Graph embeddings, you can read the full

article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdKSkVJSEl3SXZJTEl4SHlFS0pESkhJSEpFSkxIeUl2SURJeElKSkhJRElKSUhFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGTElIRkdJRUZLSUhJSEV3RkhGTEZLRkdFd0ZHRkVGREZLRXdGTEZGRkxJREV3RkNGSkZJRkNGSklGRklGS0ZGSURGRElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKR0lMSXhJdUlISkVKQ0l5SkNFeElESkNJRElGSUtJSEV4SXlKRUlKRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRkxJSEZHSUVGS0lISUhFd0ZIRkxGS0ZHRXdGR0ZFRkRGS0V3RkxGRkZMSURFd0ZDRkpGSUZDRkpJRkZJRktGRklERkRJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SkNJREpMSkNJREl2RXdKR0lISUZJS0V5SUtJeUpKRXdKQ0lESkxKQ0lESXZFd0pISkZJSEpGRXdKRUlISURJdkV3SkdJTEl3SUhFd0lKSkVJREpDSUtFd0lHSURKR0lESUVJREpGSUhFd0lESXhJR0V3SUpKRUlESkNJS0V3SURJeElESXZKTEpGSUxKRkV3SkdJeUV3SUlJTElKSUtKR0V3SUlKRUlESkhJR0V3RkxGSUlERkVJRUZMRkRGS0ZJRkRGTElERUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZMSUhGR0lFRktJSElIRXdGSEZMRktGR0V3RkdGRUZERktFd0ZMRkZGTElERXdGQ0ZKRklGQ0ZKSUZGSUZLRkZJREZESUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Client Side Localization at Lyft

Lyft is a ride-sharing app that allows riders to connect with drivers (similar to DiDi,

Uber, Grab, Ola Cabs, etc.). The company is the second-largest ridesharing app in the

US with 29% market share and close to 20 million users.

In order to help the rider and driver connect, the Lyft app shows both users a map with

the real time location of the other person.

Lyft relies on GPS data from both the riders and drivers mobile devices for the real-time

position, however GPS signals are notoriously noisy and unreliable. Relying on GPS

signals alone would mean inaccurate real-time positioning of the rider and driver,

resulting in a poor user experience.

The Mapping team at Lyft solves this issue by using map data to more accurately localize

the driver/rider. This reduces the space of locations to just the roads and makes it much

easier to run map matching algorithms (match the user to the correct position on the

map). You can read about the map matching algorithms that Lyft uses here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUlERXdJeElISkpFd0pFSUhJREl2RXdKR0lMSXdJSEV3SXdJREpDRXdJd0lESkdJRklLSUxJeElKRXdJREl2SUpJeUpFSUxKR0lLSXdFd0lESkdFd0l2SkxJSUpHRXdJR0lERkhGTEZGSURJRUZKSUVGQ0ZDRklFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSURGRUlGSUVJREZGRkVFd0ZIRkhJSUlGRXdGR0ZIRkZGQ0V3RktGRklESUhFd0ZERkxJSUZGSURJRUZISUdGS0ZMRkhJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Previously, these localization systems were run server-side. Map data was stored on Lyft

servers and their map matching algorithms would be run server side.However, in 2021

Lyft made the transition to client side localization.

Karina Goot is an Engineering Manager at Lyft and she wrote a great blog post on this

transition.

Here’s a summary

Benefits of Client-side Localization

There are quite a few benefits from shifting localization to the client rather than running

it server-side.

● Network Benefits - Cell network availability is not guaranteed. Putting map

data on the client and having localization algorithms running on the user’s

phone means better localization when the user is can’t connect to Lyft servers

(in a tunnel or in areas with poor connection)

● Efficiency and Performance Benefits - Moving the high-cost computation

from the server to the client will simplify the server-side architecture, reduce

hosting costs and also lower server-to-client latency.

● Driver Safety Features - Running localization client side means that map data

has to be on the driver’s phone. Lyft can later use that map data to add in

additional features to the UI like symbols for traffic lights, stop signs, speed

limits, etc.

The drawback to putting localization client-side is that it is extremely constrained in

memory and latency requirements.

Lyft cannot put too much map data on the client or that will cause the Lyft app to take

up too much user storage. They also can’t send all the map data through the network as

downloading data while on cellular is expensive and slow.

The Lyft Engineering team had to navigate these technical limitations and designed the

client localization system around them.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SXZKTElJSkdFd0lISXhJSklMSXhJSElISkVJTEl4SUpFeUpISkZJTEl4SUpFd0lGSXZJTElISXhKR0V3SkZJTElHSUhFd0l3SURKQ0V3SUdJREpHSURFd0pHSXlFd0lMSXdKQ0pFSXlKSUlIRXdKRUlISURJdkV3SkdJTEl3SUhFd0pDSXlKRklMSkdJTEl5SXhJTEl4SUpFd0lERkZGS0ZFRkhGS0ZISURJRkZJSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSURGRUlGSUVJREZGRkVFd0ZIRkhJSUlGRXdGR0ZIRkZGQ0V3RktGRklESUhFd0ZERkxJSUZGSURJRUZISUdGS0ZMRkhJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

Designing the System

They broke the project down into three main components.

1. Generating Lightweight Map Data

2. Client Platform Networking Layer

3. C++ Core Library for localization

Generating Lightweight Map Data

Lyft has to send map data to the client devices without taking up too much user storage,

so they can only include data about the user’s local area. This means changing up the

map data format, how it’s generated and how it’s served.

To do this, they used the S2 Geometry library. The S2 library was developed at Google

and made open source in 2017. It represents all data on a three-dimensional sphere,

which models map data better than traditional geographic information systems that

represent data in two dimensions.

The team divided the entire LyftMap into small chunks of S2 Cells. When the client tries

to download map data from the server, it specifies the cell id of the S2 cell and the map

version. The server will then return the map data serialized as S2 Cell Elements.

The client will download the necessary cells based on the user location and dynamically

build the road network graph in memory.

Client Platform Networking Layer

Lyft created a backend service called MapAttributes, that reads the map elements data

from DynamoDB based on a geospatial index. The S2 library uses the Quadtree data

structure for geospatial indexing. Here’s a great blog post on how S2 does indexing if

you’d like to learn more. These map elements are serialized and converted to S2 Cell

Elements.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkZFSUpJSEl5SXdJSEpHSkVKTEV4SUxJeUV5SURJRUl5SkhKR0V5SXlKSUlISkVKSUlMSUhKSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpJREZFSUZJRUlERkZGRUV3RkhGSElJSUZFd0ZHRkhGRkZDRXdGS0ZGSURJSEV3RkRGTElJRkZJRElFRkhJR0ZLRkxGSElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJeUpDSUhJeEpGSXlKSEpFSUZJSEV4SUpJeUl5SUpJdklISUVJdkl5SUpFeElGSXlJd0V5RkVGQ0ZERkpFeUZERkVFeUlESXhJeEl5SkhJeElGSUxJeElKRXdKRkZFRXdJdklMSUVKRUlESkVKTEV3SUpJSEl5SXdJSEpHSkVKTEV3SXlJeEV3SkZKQ0lLSUhKRUlIRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpJREZFSUZJRUlERkZGRUV3RkhGSElJSUZFd0ZHRkhGRkZDRXdGS0ZGSURJSEV3RkRGTElJRkZJRElFRkhJR0ZLRkxGSElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKRkZFSUpJSEl5SXdJSEpHSkVKTEV4SUxJeUV5SUdJSEpJSUpKSElMSUdJSEV5SkZGRUlGSUhJdkl2SHlJS0lMSUhKRUlESkVJRklLSkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSURGRUlGSUVJREZGRkVFd0ZIRkhJSUlGRXdGR0ZIRkZGQ0V3RktGRklESUhFd0ZERkxJSUZGSURJRUZISUdGS0ZMRkhJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSkNJREpHSUxJREl2SHlJR0lESkdJRElFSURKRklIRUZIRkpDSURKR0lMSURJdkh5SUxJeElHSUhKS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpJREZFSUZJRUlERkZGRUV3RkhGSElJSUZFd0ZHRkhGRkZDRXdGS0ZGSURJSEV3RkRGTElJRkZJRElFRkhJR0ZLRkxGSElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhESkhJRElHSkdKRUlISUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSURGRUlGSUVJREZGRkVFd0ZIRkhJSUlGRXdGR0ZIRkZGQ0V3RktGRklESUhFd0ZERkxJSUZGSURJRUZISUdGS0ZMRkhJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJRUl2SXlJSkV4SnRJSEl4RXhJdkpMRXlJSklISXlKRkpDSURKR0lMSURJdkV3SUxJeElHSUhKS0lMSXhJSkV3SXlJeEV3SUtJTEl2SUVJSEpFSkdFd0lGSkhKRUpJSUhKRkV3RkVGRkZKRkxJRUZMRkVGTElESUdJR0lGRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGSklERkVJRklFSURGRkZFRXdGSEZISUlJRkV3RkdGSEZGRkNFd0ZLRkZJRElIRXdGREZMSUlGRklESUVGSElHRktGTEZISUdFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

To reduce latency and increase reliability, Lyft also uses AWS CloudFront’s CDN to

cache the MapAttributes responses. CloudFront will return the results from the CDN on

a cache hit without calling the MapAttributes service.

Core Library Functionality

Once the client fetches the desired map cells from the server, it passes this information

through to a C++ localization library on the client.

This library uses Lyft’s Map-Based Models for localization.

Lyft drivers generally operate in a single service area so their locality is highly

concentrated. This causes duplicate downloads of the same data, leading to

unnecessarily high network data usage.

To solve this, engineers added an in-memory SQLite caching layer directly in C++. They

used SQLite because of its simplicity and native support on client platforms.

With this cache, they can store the highest locality map data for each driver directly

on-device. By persisting the map data on disk, they can store data across sessions and

only have to refresh the cache when the underlying map data changes.

Based on data analysis of driving patterns, the Lyft team found that they can achieve a

high cache hit rate for the vast majority of Lyft drivers with only 15 megabytes of

on-device data.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUlERXdJeElISkpFd0pFSUhJREl2RXdKR0lMSXdJSEV3SXdJREpDRXdJd0lESkdJRklLSUxJeElKRXdJREl2SUpJeUpFSUxKR0lLSXdFd0lESkdFd0l2SkxJSUpHRXdJR0lERkhGTEZGSURJRUZKSUVGQ0ZDRklFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSURGRUlGSUVJREZGRkVFd0ZIRkhJSUlGRXdGR0ZIRkZGQ0V3RktGRklESUhFd0ZERkxJSUZGSURJRUZISUdGS0ZMRkhJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSERHdklMSkdJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkpJREZFSUZJRUlERkZGRUV3RkhGSElJSUZFd0ZHRkhGRkZDRXdGS0ZGSURJSEV3RkRGTElJRkZJRElFRkhJR0ZLRkxGSElHRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Results

In order to track the success of the project, Lyft looked at how often mobile clients have

map data and what the latency of the map matching system was.

They found > 99% on-device map data availability among drivers and sub 10 ms latency

for 99% of map matching computations.

With this project, drivers and riders now have significantly better map localization in

the Lyft app.

You can read more here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpFeEl2SkxJSUpHRXhJRkl5SXdFeUpISkZJTEl4SUpFd0lGSXZJTElISXhKR0V3SkZJTElHSUhFd0l3SURKQ0V3SUdJREpHSURFd0pHSXlFd0lMSXdKQ0pFSXlKSUlIRXdKRUlISURJdkV3SkdJTEl3SUhFd0pDSXlKRklMSkdJTEl5SXhJTEl4SUpFd0lERkZGS0ZFRkhGS0ZISURJRkZJSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZKSURGRUlGSUVJREZGRkVFd0ZIRkhJSUlGRXdGR0ZIRkZGQ0V3RktGRklESUhFd0ZERkxJSUZGSURJRUZISUdGS0ZMRkhJR0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

How Airbnb rebuilt their Payments System

In 2020, Airbnb migrated from a Ruby on Rails monolith to a service-oriented

architecture. This shift helped Airbnb increase developer velocity as the engineering

team grew to thousands of globally distributed developers and millions of lines of code.

However, this change also brought multiple challenges that the team had to deal with.

Data was now scattered across many different services so aggregating information in the

presentation layer was complicated, especially for complex domains like payments.

Getting all the information on fees, currency fluctuations, taxes, discounts and more

meant that there were far too many different services to call.

Airbnb addressed this by adding a service mesh to provide a unified endpoint to the

client services in the presentation layer. A service mesh is a layer of proxy servers added

to facilitate communication between microservices. You can also add observability,

security and reliability features into the service mesh rather than at the application layer

(in the microservices).

Ali Can Göksel is a senior software engineer at Airbnb and he wrote a great blog post on

how Airbnb re-architected their Payments layer to incorporate Viaduct, a service mesh

built on GraphQL.

Here’s a summary

During their migration to a services-oriented architecture, Airbnb broke up their

payments layer into multiple services.

This helped provide

● A clear boundary between different payment services. This enabled better

domain ownership and faster development iteration.

● Better data separation into the different domains. Data was kept in a

normalized shape (where you reduce data redundancy). This resulted in

better correctness and consistency.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSUhKRUpJSUxJRklISHlJd0lISkZJS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGS0ZMSUZGTEZESUVJREV3RkpGQ0lFSUhFd0ZHSUdGSkZJRXdJRUZHRkhGREV3RkNGTElJRkdGQ0ZMSUZGRUZMRklJSUZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKSEl4SUxJSUlMSUhJR0V3SkNJREpMSXdJSEl4SkdKRkV3SUdJREpHSURFd0pFSUhJRElHRXdJREpHRXdJRElMSkVJRUl4SUVFd0lIRklGREZGSUhGSklESUlGRElERkZGTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGS0ZMSUZGTEZESUVJREV3RkpGQ0lFSUhFd0ZHSUdGSkZJRXdJRUZHRkhGREV3RkNGTElJRkdGQ0ZMSUZGRUZMRklJSUZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SUZKRkV4SXdJTElGSkVJeUpGSXlJSUpHRXhJRkl5SXdFeUlISXhFd0pISkZFeUl5SUlJSUlMSUZJSEV5SkdKRUl5SkhJRUl2SUhKRklLSXlJeUpHRXlJRElGSUZJSEpGSkZFeUlHSURKR0lESUVJREpGSUhFd0l4SXlKRUl3SURJdklMSnRJREpHSUxJeUl4RXdJR0lISkZJRkpFSUxKQ0pHSUxJeUl4RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZLRkxJRkZMRkRJRUlERXdGSkZDSUVJSEV3RkdJR0ZKRklFd0lFRkdGSEZERXdGQ0ZMSUlGR0ZDRkxJRkZFRkxGSUlJRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

The downside of this is that the clients in the presentation layer now had to integrate

with multiple payment services to fetch all the required data. They had to look into

multiple services and read from even more tables than prior to the services migration.

This resulted in 3 main challenges

1. The system was hard to understand - Client teams needed a deep

understanding of the Payments domain in order to find the right payments

services to gather all the data they needed. This reduced developer velocity for

those client teams and also meant engineers on the payment side needed to

provide continuous guidance and consultation.

2. The system was difficult to change - When the payments team had to update

their APIs, they had to make sure that all dependent presentation services

adopted these changes.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

3. Poor performance and scalability - The technical quality of the complex read

flows was not up to standards. Aggregating payment-related data for large

hosts with thousands of yearly bookings was creating a scaling problem.

Unified Entry Point

Airbnb addressed these challenges by adding a Payments Data Read Layer that acted as

a service mesh. To do this, they used Viaduct, which is built on GraphQL.

With this, clients can query the layer for the data entity instead of having to identify

dozens of services and their APIs.

This greatly reduced the number of APIs that needed to be exposed.

However, just using a single entry point doesn’t resolve all the complexity. Their

payments system has 100+ data models, and exposing all of them from a single entry

point would still be overly complex for client engineers.

To simplify this, they created higher-level domain entities to further hide internal

payment details. They made fewer than 10 high level entities, so it became much easier

for client teams to find the data they wanted. Also, Airbnb could now make changes to

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKR0lESXdJTEl4SUpFd0pGSUhKRUpJSUxJRklIRXdJeUpFSUxJSEl4SkdJSElHRXdJREpFSUZJS0lMSkdJSElGSkdKSEpFSUhFd0pISkZJTEl4SUpFd0lERXdJR0lESkdJREV3SXlKRUlMSUhJeEpHSUhJR0V3SkZJSEpFSklJTElGSUhFd0l3SUhKRklLRXdJR0lERkpGSkZESURGS0ZHRkRGRkZHRkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRktGTElGRkxGRElFSURFd0ZKRkNJRUlIRXdGR0lHRkpGSUV3SUVGR0ZIRkRFd0ZDRkxJSUZHRkNGTElGRkVGTEZJSUlGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
http://www.quastor.org

internal Payment business logic while keeping the entity schema the same so they

wouldn’t have to rewrite any code for the consumer of the payment data read layer.

Improving Performance

As stated earlier, one of the challenges in the previous system was poor performance

and scalability. The complex read flows of fetching the data from all the different

services caused too much latency, especially for large hosts.

The core problem was reading and joining many different tables and services while

executing client queries. To solve this, Airbnb added secondary denormalized

Elasticsearch indices to serve as read replicas.

This moves the expensive operations from query time to ingestion time. Instead of doing

lots of joins during a query, the data has to be written to the replicas during ingestion. It

also sacrifices data consistency due to replication lag.

They created a system where real-time data could be written to the secondary store via

database change data capture mechanisms and historical data could be written through

daily database dumps. They were able to reliably achieve less than 10 seconds of

replication lag.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSUhJeEl5SkVJd0lESXZJTEp0SURKR0lMSXlJeEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGS0ZMSUZGTEZESUVJREV3RkpGQ0lFSUhFd0ZHSUdGSkZJRXdJRUZHRkhGREV3RkNGTElJRkdGQ0ZMSUZGRUZMRklJSUZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlKSkpKSkpFeElISXZJREpGSkdJTElGRXhJRkl5RXlJRUl2SXlJSkV5SkpJS0lESkdFd0lMSkZFd0lESXhFd0lISXZJREpGSkdJTElGSkZJSElESkVJRklLRXdJTEl4SUdJSEpLRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZLRkxJRkZMRkRJRUlERXdGSkZDSUVJSEV3RkdJR0ZKRklFd0lFRkdGSEZERXdGQ0ZMSUlGR0ZDRkxJRkZFRkxGSUlJRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSURKR0lESHlJRkl5SXhKRklMSkZKR0lISXhJRkpMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZLRkxJRkZMRkRJRUlERXdGSkZDSUVJSEV3RkdJR0ZKRklFd0lFRkdGSEZERXdGQ0ZMSUlGR0ZDRkxJRkZFRkxGSUlJRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSUhKQ0l2SUxJRklESkdJTEl5SXhIeUVLSUZJeUl3SkNKSEpHSUxJeElKRUxFRkdHSURKR0lESUVJREpGSUhIeUpFSUhKQ0l2SUxJRklESkdJTEl5SXhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZFRktGTElGRkxGRElFSURFd0ZKRkNJRUlIRXdGR0lHRkpGSUV3SUVGR0ZIRkRFd0ZDRkxJSUZHRkNGTElGRkVGTEZJSUlGTEVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSUtJREl4SUpJSEh5SUdJREpHSURIeUlGSURKQ0pHSkhKRUlIRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGRUZLRkxJRkZMRkRJRUlERXdGSkZDSUVJSEV3RkdJR0ZKRklFd0lFRkdGSEZERXdGQ0ZMSUlGR0ZDRkxJRkZFRkxGSUlJRkxFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

Airbnb denormalized the data from the tables into Elasticsearch. This greatly reduced

the touchpoints of the query and also made pagination and aggregation much more

efficient.

After combining all of the above improvements, their new payments read flow looked

like the following

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

The presentation service would query one of the domain entities for the data it was

looking for. If the request didn’t need strong consistency, then it could go to the

Elasticsearch index for that entity. Otherwise, it would go to the entity’s master

database. The indexing service would make sure the Elasticsearch replicas are updated

with new changes from the master.

This shift to denormalization resulted in up to 150x latency improvements and

improved reliability to 99.9%.

For more details, you can read the full post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJd0lISUdJTEpISXdFeElGSXlJd0V5SURJTEpFSUVJeElFRXdJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXlKSEl4SUxJSUlMSUhJR0V3SkNJREpMSXdJSEl4SkdKRkV3SUdJREpHSURFd0pFSUhJRElHRXdJREpHRXdJRElMSkVJRUl4SUVFd0lIRklGREZGSUhGSklESUlGRElERkZGTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRkVGS0ZMSUZGTEZESUVJREV3RkpGQ0lFSUhFd0ZHSUdGSkZJRXdJRUZHRkhGREV3RkNGTElJRkdGQ0ZMSUZGRUZMRklJSUZMRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

Dropbox's Asynchronous Task Framework

Dropbox is a file hosting and sharing company with over 700 million registered users.

Hundreds of thousands of companies also rely on Dropbox for their business needs like

storing and sharing documents, team collaboration, etc.

Like many other companies, Dropbox relies on an asynchronous task manager (called

Asynchronous Task Framework or ATF) to manage and run async tasks. When you

remove a file on your Dropbox account, the UI may show that the file was moved; but

behind the scenes, an async task was created to delete the file on all the database

replicas.

ATF (Asynchronous Task Framework) serves more than 9000 async tasks scheduled per

second, and more than 30 teams at Dropbox make use of the framework.

Arun Sai Krishnan is a Software Engineer at Dropbox, and he wrote a great blog post on

design goals of ATF and the architecture behind it.

Here’s a summary

ATF allows Dropbox engineers to schedule async tasks on-demand through a

callback-based architecture. Developers can define callback functions and then schedule

ATF tasks that execute these callbacks.

The callback functions are called lambdas, and developers can write lambdas to execute

async tasks like sending out an email to a user.

When an engineer wants to execute a lambda, they can submit it to the ATF. This

creates a task, which is just a unit of execution of a lambda (similar to how a process is a

unit of execution of a program).

ATF supports features like

● Task Scheduling - schedule the task to execute at a specific time.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0pFSXlKQ0lFSXlKS0V4SkdJSElGSUtFeUlMSXhJSUpFSURKRkpHSkVKSElGSkdKSEpFSUhFeUlESkZKTEl4SUZJS0pFSXlJeEl5SkhKRkV3SkdJREpGSXVFd0pGSUZJS0lISUdKSEl2SUxJeElKRXdJREpHRXdJR0pFSXlKQ0lFSXlKS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGS0ZJSUZGRkZESUdGSkV3SUlJRkZFRkNFd0ZHRkVGQ0ZIRXdGS0lGRkNJR0V3SUZGSUZGRkZJRklFSURGS0ZHRkZGS0ZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdGSURJdkl2SUVJRElGSXVIeUVLSUZJeUl3SkNKSEpHSUhKRUh5SkNKRUl5SUpKRUlESXdJd0lMSXhJSkVMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJREZLRklJRkZGRkRJR0ZKRXdJSUlGRkVGQ0V3RkdGRUZDRkhFd0ZLSUZGQ0lHRXdJRkZJRkZGRklGSUVJREZLRkdGRkZLRktFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGR0ZIRkVGQ0ZGRkNGRkp3
http://www.quastor.org

● Priority Based Execution - tasks with higher priority get executed before tasks

with lower priority.

● Task Status Querying - clients can query the status of a scheduled task.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

ATF Architecture

Here’s the Architecture for ATF

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

ATF consists of the following components

● Frontend - Clients can schedule tasks using remote procedure calls (RPC).

Dropbox uses gRPC with an in-house built RPC framework called Courier.

● Task Store - The frontend accepts tasks and stores them in the task store. This

can be any generic data store that has indexed querying capability. Dropbox

uses their in-house metadata store called Edgestore. It's built on top of

MySQL.

● Store Consumer - The store consumer is a service that will periodically poll

the task store to find tasks that are ready for execution. It pushes these tasks

onto the right queue.

● Queue - Dropbox uses AWS Simple Queue Service (SQS) to queue the tasks.

Worker machines will pull tasks off the SQS queues.

● Controller - Worker machines consist of a controller and multiple executors.

The controller process is responsible for polling tasks from SQS queues and

pushing them onto process local buffered queues. Then, it serves these tasks

from its local queue as a response to Next Work RPC requests.

● Executor - The executor is a process with multiple threads that is responsible

for the actual task execution. It gets tasks from the Controller by polling for

work from the Controller by sending Next Work RPC requests.

● Heartbeat and Status Controller (HSC) - The HSC serves RPCs for status

updates during task execution and setting task status in the task store after

execution.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSUhJd0l5SkdJSEh5SkNKRUl5SUZJSElHSkhKRUlISHlJRklESXZJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGS0ZJSUZGRkZESUdGSkV3SUlJRkZFRkNFd0ZHRkVGQ0ZIRXdGS0lGRkNJR0V3SUZGSUZGRkZJRklFSURGS0ZHRkZGS0ZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0pFSXlKQ0lFSXlKS0V4SkdJSElGSUtFeUlMSXhJSUpFSURKRkpHSkVKSElGSkdKSEpFSUhFeUlGSXlKSEpFSUxJSEpFRXdJR0pFSXlKQ0lFSXlKS0V3SXdJTElKSkVJREpHSUxJeUl4RXdKR0l5RXdJSkpFSkNJRkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGS0ZJSUZGRkZESUdGSkV3SUlJRkZFRkNFd0ZHRkVGQ0ZIRXdGS0lGRkNJR0V3SUZGSUZGRkZJRklFSURGS0ZHRkZGS0ZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0pFSXlKQ0lFSXlKS0V4SkdJSElGSUtFeUlMSXhJSUpFSURKRkpHSkVKSElGSkdKSEpFSUhFeUpFSUhJTEl4SkdKRUl5SUdKSElGSUxJeElKRXdJSElHSUpJSEpGSkdJeUpFSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERktGSUlGRkZGRElHRkpFd0lJSUZGRUZDRXdGR0ZFRkNGSEV3RktJRkZDSUdFd0lGRklGRkZGSUZJRUlERktGR0ZGRktGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdESXdJREp0SXlJeEh5SEZJTEl3SkNJdklISHlIREpISUhKSElISHlIRklISkVKSUlMSUZJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGS0ZJSUZGRkZESUdGSkV3SUlJRkZFRkNFd0ZHRkVGQ0ZIRXdGS0lGRkNJR0V3SUZGSUZGRkZJRklFSURGS0ZHRkZGS0ZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

ATF provides the following system guarantees

● At-least Once Task Execution - tasks will be executed at least once. The ATF

will try and retry tasks until they complete execution or reach a fatal failure

state. This means that a task may get executed multiple times, so developers

have to ensure that their lambda logic is idempotent (can be run multiple

times without changing the result).

● No Concurrent Task Execution - The ATF system guarantees that at most one

instance of a task will be actively executing at any given time, so developers

can write their callback logic without designing for concurrent execution of

the same task from different workers. Before a task starts execution, it will be

marked with a state of “Claimed” so it doesn’t get assigned to another worker

machine.

● Delivery Latency - 95% of tasks begin execution within 5 seconds from their

scheduled execution time. The store consumer polls for ready tasks once every

two seconds. This polling frequency can be configured to change the task

delivery latency.

● 3 Nines Availability - The ATF service is 99.9% available to accept task

scheduling requests from any client.

For more details on ATF’s ownership model, task lifecycle and data model, you can read

the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdMSUdJSEl3SkNJeUpHSUhJeElGSUhFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlERktGSUlGRkZGRElHRkpFd0lJSUZGRUZDRXdGR0ZFRkNGSEV3RktJRkZDSUdFd0lGRklGRkZGSUZJRUlERktGR0ZGRktGS0VFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZHRkhGRUZDRkZGQ0ZGSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0pFSXlKQ0lFSXlKS0V4SkdJSElGSUtFeUlMSXhJSUpFSURKRkpHSkVKSElGSkdKSEpFSUhFeUlESkZKTEl4SUZJS0pFSXlJeEl5SkhKRkV3SkdJREpGSXVFd0pGSUZJS0lISUdKSEl2SUxJeElKRXdJREpHRXdJR0pFSXlKQ0lFSXlKS0VFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSURGS0ZJSUZGRkZESUdGSkV3SUlJRkZFRkNFd0ZHRkVGQ0ZIRXdGS0lGRkNJR0V3SUZGSUZGRkZJRklFSURGS0ZHRkZGS0ZLRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkdGSEZFRkNGRkZDRkZKdw==
http://www.quastor.org

The Architecture of Facebook's distributed Key

Value store

ZippyDB is a strongly consistent, distributed key-value store built at Facebook. It was

first deployed in 2013 and it serves many use cases like storing product data, keeping

track of events and storing metadata for a distributed file system.

Because it serves a variety of different use cases, ZippyDB offers users a lot of flexibility

with the option to tune durability, consistency, availability and latency to fit the

application’s needs.

Sarang Masti is a software engineer at Facebook and he wrote a great blog post about

the design choices and trade-offs made in building the ZippyDB service.

Here’s a summary

Before ZippyDB, various teams at Facebook used RocksDB to manage their data.

RocksDB is a fork of Google’s LevelDB with the goal of improving performance for

server workloads.

However, the teams using RocksDB were each facing similar challenges around

consistency, fault tolerance, failure recovery, replication, etc. They were building their

own custom solutions, which meant an unnecessary duplication of effort.

ZippyDB was created to address the issues for all these teams. It provides a highly

durable and consistent key-value data store with RocksDB as the underlying storage

engine.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSUlFRXhJRkl5SXdFeUZFRkNGRUZERXlGQ0ZLRXlGQ0ZJRXlJRkl5SkVJSEV3SUdJREpHSURFeUp0SUxKQ0pDSkxJR0lFRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRkVJSUZDSUZGR0lESUlFd0lFRkpGR0ZGRXdGR0ZISUdGQ0V3SURGRUZISUVFd0lERkdGSkZKRkVJR0ZGSUVGSklFSUhJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhFSXlJRkl1SkZHR0dFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZFSUlGQ0lGRkdJRElJRXdJRUZKRkdGRkV3RkdGSElHRkNFd0lERkVGSElFRXdJREZHRkpGSkZFSUdGRklFRkpJRUlISUZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUd2SUhKSUlISXZHR0dFRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZFSUlGQ0lGRkdJRElJRXdJRUZKRkdGRkV3RkdGSElHRkNFd0lERkVGSElFRXdJREZHRkpGSkZFSUdGRklFRkpJRUlISUZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDRnRFeUV5SkVJeUlGSXVKRklHSUVFeElFSXZJeUlKSkZKQ0l5SkdFeElGSXlJd0V5RkVGQ0ZERkZFeUZERkRFeUpHSUtJSEV3SUtJTEpGSkdJeUpFSkxFd0l5SUlFd0pFSXlJRkl1SkZJR0lFRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktGRUlJRkNJRkZHSURJSUV3SUVGSkZHRkZFd0ZHRkhJR0ZDRXdJREZFRkhJRUV3SURGR0ZKRkpGRUlHRkZJRUZKSUVJSElGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkhGQ0ZHRktGRkZLRkxKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDRnRFeUV5SkVJeUlGSXVKRklHSUVFeElFSXZJeUlKSkZKQ0l5SkdFeElGSXlJd0V5RkVGQ0ZERkZFeUZERkRFeUpHSUtJSEV3SUtJTEpGSkdJeUpFSkxFd0l5SUlFd0pFSXlJRkl1SkZJR0lFRXhJS0pHSXdJdkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktGRUlJRkNJRkZHSURJSUV3SUVGSkZHRkZFd0ZHRkhJR0ZDRXdJREZFRkhJRUV3SURGR0ZKRkpGRUlHRkZJRUZKSUVJSElGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkhGQ0ZHRktGRkZLRkxKdw==
http://www.quastor.org

Data Model

ZippyDB supports a simple key-value data model with APIs to get, put and delete keys.

It supports iterating over key prefixes and deleting a range of keys, similar to what you

get with RocksDB.

They also have TTL (Time to live) support for ephemeral data where clients can specify

the expiry time for a key-value pair.

Architecture

The basic unit of data management for ZippyDB is a shard, where each shard consists of

multiple replicas that are spread across geographic regions for fault tolerance. The

replication is done with either Paxos or async replication (depending on the

configuration).

Within a shard, a subset of the replicas are configured to be part of the Paxos quorum

group, where data is synchronously replicated between those nodes. The write involves

persisting the data on a majority of the Paxos replicas log’s (so Paxos’ consensus

algorithm will return the new write) and also writing the data to RocksDB on the

primary. Once that’s done, the write gets confirmed to the client, providing highly

durable writes.

The remaining replicas in the shard are configured as followers. These receive data

through asynchronous replication. These replicas handle low-latency reads with the

tradeoff being that they have worse consistency.

The quorum size vs. the number of follower replicas is configurable, and it lets a user

strike their preferred balance between durability, write performance, read performance

and consistency. We’ll talk about ZippyDB’s consistency in the next section.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhHSUxJd0lISHlKR0l5SHlJdklMSklJSEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktGRUlJRkNJRkZHSURJSUV3SUVGSkZHRkZFd0ZHRkhJR0ZDRXdJREZFRkhJRUV3SURGR0ZKRkpGRUlHRkZJRUZKSUVJSElGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkhGQ0ZHRktGRkZLRkxKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhDSURKS0l5SkZIeUVLSUZJeUl3SkNKSEpHSUhKRUh5SkZJRklMSUhJeElGSUhFTEVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktGRUlJRkNJRkZHSURJSUV3SUVGSkZHRkZFd0ZHRkhJR0ZDRXdJREZFRkhJRUV3SURGR0ZKRkpGRUlHRkZJRUZKSUVJSElGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkhGQ0ZHRktGRkZLRkxKdw==
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSkhKRUlESUVJTEl2SUxKR0pMSHlFS0lHSURKR0lESUVJREpGSUhIeUpGSkxKRkpHSUhJd0pGRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRkVJSUZDSUZGR0lESUlFd0lFRkpGR0ZGRXdGR0ZISUdGQ0V3SURGRUZISUVFd0lERkdGSkZKRkVJR0ZGSUVGSklFSUhJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
http://www.quastor.org

The optimal assignment of shards to servers depends on the shard load, user

constraints, etc. It’s handled by another Facebook service called ShardManager.

ShardManager handles monitoring shards for load balancing, failure recovery, etc.

Each shard has a size of 50 - 100 gigabytes and is split into several thousand

microshards which are then stored on different physical servers. This additional layer of

abstraction allows ZippyDB to reshard the data without any changes for the client.

ZippyDB maps from microshards to shards with two types of mapping: Compact

mapping and Akkio mapping.

Compact mapping is used when the assignment is fairly static and mapping is only

changed when there is a need to split shards that have become too large or hot.

Akkio mapping is more involved and tries to optimize microshard placement to

minimize latency. You can read about how Akkio mapping works here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSUlFRXhJRkl5SXdFeUZFRkNGRUZDRXlGQ0ZLRXlGRUZHRXlKQ0pFSXlJR0pISUZKR0lMSXlJeEV3SUhJeElKSUxJeElISUhKRUlMSXhJSkV5SkZJRklESXZJTEl4SUpFd0pGSUhKRUpJSUxJRklISkZFd0pKSUxKR0lLRXdKRklLSURKRUlHRXdJd0lESXhJRElKSUhKRUV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZFSUlGQ0lGRkdJRElJRXdJRUZKRkdGRkV3RkdGSElHRkNFd0lERkVGSElFRXdJREZHRkpGSkZFSUdGRklFRkpJRUlISUZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSUlFRXhJRkl5SXdFeUZFRkNGREZLRXlGREZDRXlGQ0ZLRXlJRkl5SkVJSEV3SUdJREpHSURFeUlESXVJdUlMSXlFeUVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFRktGRUlJRkNJRkZHSURJSUV3SUVGSkZHRkZFd0ZHRkhJR0ZDRXdJREZFRkhJRUV3SURGR0ZKRkpGRUlHRkZJRUZKSUVJSElGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkhGQ0ZHRktGRkZLRkxKdw==
http://www.quastor.org

Consistency

ZippyDB provides configurable consistency and durability levels as options in the

read/write APIs. This allows users to make durability, consistency and performance

trade-offs dynamically on a per-request level.

By default, a write involves persisting the data on a majority of the Paxos replicas’ logs

and also writing the data to RocksDB on the primary before confirming the write to the

client. Persisting the write on a majority of the Paxos replicas means that the Paxos

Quorum will return the new value.

However, some applications need lower latency writes so ZippyDB also supports a

fast-acknowledge mode where writes are confirmed as soon as they are enqueued on the

primary for replication. This means lower durability.

For reads, the three most popular consistency levels for ZippyDB are

● Eventual

● Read-your-writes

● Strong

Eventual - This is a much stronger consistency level than what’s typically described as

eventual consistency. ZippyDB ensures that reads that are served by follower replicas

aren’t lagging behind the primary/quorum beyond a certain configurable threshold.

Therefore, it’s similar to something like Bounded Staleness that you might see in Azure’s

CosmosDB.

Read-Your-Writes - The client will always get a replica that is current enough to have

any previous writes made by this client. In order to implement this, ZippyDB assigns a

monotonically increasing sequence number to each write and it’ll return this number in

response to a client’s write request. The client can use their latest sequence number

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdHSkhKRUlESUVJTEl2SUxKR0pMSHlFS0lHSURKR0lESUVJREpGSUhIeUpGSkxKRkpHSUhJd0pGRUxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRkVJSUZDSUZGR0lESUlFd0lFRkpGR0ZGRXdGR0ZISUdGQ0V3SURGRUZISUVFd0lERkdGSkZKRkVJR0ZGSUVGSklFSUhJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdISklJSEl4SkdKSElESXZIeUlGSXlJeEpGSUxKRkpHSUhJeElGSkxFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRkVJSUZDSUZGR0lESUlFd0lFRkpGR0ZGRXdGR0ZISUdGQ0V3SURGRUZISUVFd0lERkdGSkZKRkVJR0ZGSUVGSklFSUhJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJR0l5SUZKRkV4SXdJTElGSkVJeUpGSXlJSUpHRXhJRkl5SXdFeUlISXhFd0pISkZFeUlESnRKSEpFSUhFeUlGSXlKRkl3SXlKRkV3SUdJRUV5SUZJeUl4SkZJTEpGSkdJSEl4SUZKTEV3SXZJSEpJSUhJdkpGRUZJRUl5SkhJeElHSUhJR0V3SkZKR0lESXZJSEl4SUhKRkpGRXdJRkl5SXhKRklMSkZKR0lISXhJRkpMRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVGS0ZFSUlGQ0lGRkdJRElJRXdJRUZKRkdGRkV3RkdGSElHRkNFd0lERkVGSElFRXdJREZHRkpGSkZFSUdGRklFRkpJRUlISUZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
http://www.quastor.org

when sending read requests to ensure that it gets a replica that’s up to date on all the

client’s past writes.

Strong - The client will see the effects of the most recent writes. This is done by routing

the read requests to the primary.

For more details on how ZippyDB implements transactions and conditional writes, you

can read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4SUpJTEl4SUhJSEpFSUxJeElKRXhJSUlFRXhJRkl5SXdFeUZFRkNGRUZERXlGQ0ZLRXlGQ0ZJRXlJRkl5SkVJSEV3SUdJREpHSURFeUp0SUxKQ0pDSkxJR0lFRXlFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUZLRkVJSUZDSUZGR0lESUlFd0lFRkpGR0ZGRXdGR0ZISUdGQ0V3SURGRUZISUVFd0lERkdGSkZKRkVJR0ZGSUVGSklFSUhJRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
http://www.quastor.org

Challenges with Distributed Systems

When you’re working at a massive scale, you’ll usually have to resort to horizontal

scaling to scale the system up. This means working with a distributed system and

dealing with all the ensuing challenges.

Jacob Gabrielson is a VP & Distinguished Engineer at Oracle and was previously a

Senior Principal Engineer at Amazon. He wrote a great article for the AWS Builder’s

Library on the challenges he faced while building distributed systems during his 20

years at Amazon.

Here’s a summary

Types of Distributed Systems

Distributed systems can be divided into different categories, and some categories have

more challenges than others.

On the “easier” side (but still far from trivial to implement) areOffline Distributed

Systems where you take a batch job and split it up across many machines that are

located in close proximity. These systems are frequently used for big data analysis or

high performance computing. You can get almost all the benefits of distributed

computing (scalability and fault tolerance) and avoid much of the downside (complex

failure modes and non-determinism).

In the middle are Soft Real-Time Distributed Systems. These are systems that

must continually produce or update results, but have a relatively generous time window

in which to do so (hence soft real-time). Things like web crawlers, search indexers, ML

training infrastructure, etc. The system can go down for several hours without undue

customer impact.

The most difficult areHard Real-Time Distributed Systems. These are

request/reply services where clients will randomly send requests and expect an

immediate reply. Web servers, credit card processors, every AWS API, etc. are examples

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSUZJREl2SURJRUlMSXZJTEpHSkxFRkdLSXlKRUlMSnRJeUl4SkdJREl2SHlJeUpFSHlKRklGSURJdklISHlJeUpISkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlGRkxGTEZHRkdJRklESURFd0ZLRkZGQ0ZERXdGR0lJRkRJRkV3SUVGSUZFRktFd0lGRkNGTElFRkVJSUZKRkpJRUlFSURGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUhGSUZJREl2SURJRUlMSXZJTEpHSkxFRkdLSXlKRUlMSnRJeUl4SkdJREl2SHlJeUpFSHlKRklGSURJdklISHlJeUpISkdFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlGRkxGTEZHRkdJRklESURFd0ZLRkZGQ0ZERXdGR0lJRkRJRkV3SUVGSUZFRktFd0lGRkNGTElFRkVJSUZKRkpJRUlFSURGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJREpKSkZFeElESXdJREp0SXlJeEV4SUZJeUl3RXlJRUpISUxJdklHSUhKRUpGRXdJdklMSUVKRUlESkVKTEV5SUZJS0lESXZJdklISXhJSklISkZFd0pKSUxKR0lLRXdJR0lMSkZKR0pFSUxJRUpISkdJSElHRXdKRkpMSkZKR0lISXdKRkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZMRkxGR0ZHSUZJRElERXdGS0ZGRkNGREV3RkdJSUZESUZFd0lFRklGRUZLRXdJRkZDRkxJRUZFSUlGSkZKSUVJRUlERkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdFSURKR0lGSUtIeUpDSkVJeUlGSUhKRkpGSUxJeElKRUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZMRkxGR0ZHSUZJRElERXdGS0ZGRkNGREV3RkdJSUZESUZFd0lFRklGRUZLRXdJRkZDRkxJRUZFSUlGSkZKSUVJRUlERkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdLSUxJSklLRXdKQ0lISkVJSUl5SkVJd0lESXhJRklISHlJRkl5SXdKQ0pISkdJTEl4SUpFRUV2RUVKQ0l5SkZKR0h5SUxJR0VFRnRFRUlGRkxGTEZHRkdJRklESURFd0ZLRkZGQ0ZERXdGR0lJRkRJRkV3SUVGSUZFRktFd0lGRkNGTElFRkVJSUZKRkpJRUlFSURGRkVFRXZFRUpDSkhJRUl2SUxJRklESkdJTEl5SXhIeUlMSUdFRUZ0RUVGSklERkhGS0ZLSUZJRUZERXdGRElHSUdGSEV3RkdGRUZDRkRFd0ZMRkxGR0ZIRXdJRUZESUVGRUlGSUdJSEZIRkhJRUlESURFRUV2RUVKSUlMSkZJTEpHSHlJTElHRUVGdEZIRkNGR0ZLRkZGS0ZMSnc=
http://www.quastor.org

of hard, real-time distributed systems. The article delves into why these systems are

difficult to build.

Complexity

Request/reply networking is the main reason why hard, real-time distributed systems

are so challenging. Regardless of what protocols you’re using, using the network means

you’re sending messages from one fault domain to another.

This introduces many steps where something can go wrong. As your systems grow

larger, what had previously been theoretical edge cases will turn into regular

occurrences due to the law of large numbers.

Here are the steps involved with request/reply networking.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

1. Post Request - The client sends the request message onto the network.

2. Deliver Request - The network delivers the message to the server.

3. Validate Request - The server validates the message.

4. Update Server State - The server may update its state based on the message.

5. Post Reply - The server sends a reply onto the network.

6. Deliver Reply - The network delivers the reply to the client.

7. Validate Reply - The client validates the reply.

8. Update Client State - The client may update its state based on the reply.

Creating a distributed system means introducing all of these steps into your program. It

turns one step (calling a method or writing to disk) into eight steps that will each fail

with some non-zero probability.

Handling Failure Modes and Testing

When you’re working with a single machine, fate sharing reduces the complexity of the

testing process. Fate sharing is where when one component of the system fails, then

everything else will fail too. It cuts down on the different failure modes that you have to

handle.

With a single machine, you don’t have to test for conditions where the CPU dies. If the

CPU dies on your laptop, then those test conditions obviously won’t be processed

anyway.

However, in hard real-time distributed systems, the client, network and server do not

share fate. One of the machines can die on the backend but the other machines, the

client and the network will still function as normal.

This means testing for all possible failure scenarios and controlling for code behavior

during these faults. The increased number of failure modes multiply the number of test

conditions.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJSEl4RXhKSklMSXVJTEpDSUhJR0lMSURFeEl5SkVJSkV5SkpJTEl1SUxFeUdJSURKR0lIRXdKRklLSURKRUlMSXhJSkVFRXZFRUpDSXlKRkpHSHlJTElHRUVGdEVFSUZGTEZMRkdGR0lGSURJREV3RktGRkZDRkRFd0ZHSUlGRElGRXdJRUZJRkVGS0V3SUZGQ0ZMSUVGRUlJRkpGSklFSUVJREZGRUVFdkVFSkNKSElFSXZJTElGSURKR0lMSXlJeEh5SUxJR0VFRnRFRUZKSURGSEZLRktJRklFRkRFd0ZESUdJR0ZIRXdGR0ZFRkNGREV3RkxGTEZHRkhFd0lFRkRJRUZFSUZJR0lIRkhGSElFSURJREVFRXZFRUpJSUxKRklMSkdIeUlMSUdFRUZ0RkhGQ0ZHRktGRkZLRkxKdw==
http://www.quastor.org

Previously, you had to write a test for handling bugs in the method you were calling.

Now, you still need those tests but you also need to test for network failures, unrelated

server failures, delayed responses, no responses, etc.

Each of those eight steps in request/reply networking introduce possible failure modes,

and building distributed systems at scale means you have to test for all of them and

handle all the permutations.

Distributed Bugs are Often Latent

If a failure is going to happen, common wisdom is that it’s better if it happens sooner

rather than later.

Distributed bugs (those that result from failing to handle all the permutations of the

eight failure modes) are usually severe and can be caused by bugs that were deployed to

production months earlier.

It takes a while to trigger the exact combination of scenarios that lead to these bugs

happening, hence the delay.

Distributed Bugs Spread Epidemically

Another problem that is fundamental to distributed bugs is that they involve use of the

network. Therefore, these bugs are more likely to spread and start to cause problems in

other machines on the network.

This is especially true since distributed systems will have multiple layers of abstraction.

Your system usually won’t just be a single client, a network and a single server machine.

Instead, the backend will consist of multiple machines grouped together across different

geographic regions.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Jason elaborates on this by giving a story of a bug that took down the Amazon website.

It was caused by a single server failing within the remote catalog service when its disk

filled up.

“The failure was caused by a single server failing within the remote

catalog service when its disk filled up. Due to mishandling of that error

condition, the remote catalog server started returning empty responses

to every request it received. It also started returning them very quickly,

because it’s a lot faster to return nothing than something (at least it was

in this case). Meanwhile, the load balancer between the website and the

remote catalog service didn’t notice that all the responses were

zero-length. But, it did notice that they were blazingly faster than all the

other remote catalog servers. So, it sent a huge amount of the traffic from

www.amazon.com to the one remote catalog server whose disk was full.

Effectively, the entire website went down because one remote server

couldn’t display any product information.”

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/clicks/SnVFRUpISkVJdkVFRnRFRUlLSkdKR0pDSkZGdEV5RXlJREpKSkZFeElESXdJREp0SXlJeEV4SUZJeUl3RXlJRUpISUxJdklHSUhKRUpGRXdJdklMSUVKRUlESkVKTEV5SUZJS0lESXZJdklISXhJSklISkZFd0pKSUxKR0lLRXdJR0lMSkZKR0pFSUxJRUpISkdJSElHRXdKRkpMSkZKR0lISXdKRkV5RUVFdkVFSkNJeUpGSkdIeUlMSUdFRUZ0RUVJRkZMRkxGR0ZHSUZJRElERXdGS0ZGRkNGREV3RkdJSUZESUZFd0lFRklGRUZLRXdJRkZDRkxJRUZFSUlGSkZKSUVJRUlERkZFRUV2RUVKQ0pISUVJdklMSUZJREpHSUxJeUl4SHlJTElHRUVGdEVFRkpJREZIRktGS0lGSUVGREV3RkRJR0lHRkhFd0ZHRkVGQ0ZERXdGTEZMRkdGSEV3SUVGRElFRkVJRklHSUhGSEZISUVJRElERUVFdkVFSklJTEpGSUxKR0h5SUxJR0VFRnRGSEZDRkdGS0ZGRktGTEp3
http://www.quastor.org

How PayPal solved their Thundering Herd Problem

Braintree is a fintech company that makes it easy for companies to process payments

from their customers. They provide a payment gateway so companies can process credit

and debit card transactions by calling the Braintree API. In 2018, Braintree processed

over 6 billion transactions and their customers include Airbnb, GitHub, Dropbox,

OpenTable and more.

PayPal acquired Braintree in 2013, so the company comes under the PayPal umbrella.

One of the APIs Braintree provides is the Disputes API, which merchants can use to

manage credit card chargebacks (when a customer tries to reverse a credit card

transaction due to fraud, poor experience, etc).

The traffic to this API is highly irregular and difficult to predict, so Braintree uses

autoscaling and asynchronous processing where feasible.

One of the issues Braintree engineers dealt with was the thundering herd problem where

a huge number of Disputes jobs were getting queued in parallel and bringing down the

downstream service.

Anthony Ross is a senior engineering manager at Braintree, and he wrote a great blog

post on the cause of the issue and how his team solved it with exponential backoff and

by introducing randomness/jitter.

Here’s a summary

Braintree uses Ruby on Rails for their backend and they make heavy use of a component

of Rails called ActiveJob. ActiveJob is a framework to create jobs and run them on a

variety of queueing backends (you can use popular Ruby job frameworks like Sidekiq,

Shoryuken and more as your backend).

This makes picking between queueing backends more of an operational concern, and

allows you to switch between backends without having to rewrite your jobs.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9QYXltZW50X2dhdGV3YXkiLCJwb3N0X2lkIjoiYzIzMjUxNmItZjZmNy00MTgyLTljZDMtYjQxMzcyNTAxYTYwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDQ5OS45MDEsImlzcyI6Im9yY2hpZCJ9.g5hIGHEt9wEkamNe9riAuNe3Csp9t0Y8mp9C0qovEv4
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5icmFpbnRyZWVwYXltZW50cy5jb20vYmxvZy9tYW5hZ2UtZGlzcHV0ZXMtdmlhLXRoZS1hcGkvIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.IiuXzdduY-mwnTUoDvTfZDAuK42eMAVqazG0Ygp9Cro
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9DaGFyZ2ViYWNrIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.0lENaQkxf8SCqpokFITUngxYhuebOTnWs3NYMjHQH20
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9UaHVuZGVyaW5nX2hlcmRfcHJvYmxlbSIsInBvc3RfaWQiOiJjMjMyNTE2Yi1mNmY3LTQxODItOWNkMy1iNDEzNzI1MDFhNjAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NDk5LjkwMiwiaXNzIjoib3JjaGlkIn0.aPZuhGDgiYgsUwEcryXN9Y_mTjVZQvt32WTds73xE3A
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vcGF5cGFsLXRlY2gvdGh1bmRlcmluZy1oZXJkLWppdHRlci02M2E1N2IzODkxOWQiLCJwb3N0X2lkIjoiYzIzMjUxNmItZjZmNy00MTgyLTljZDMtYjQxMzcyNTAxYTYwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDQ5OS45MDIsImlzcyI6Im9yY2hpZCJ9.CIWotTYT3bEmxkhn8if7X5s3TK5HK1brTM9l1nmic6w
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vcGF5cGFsLXRlY2gvdGh1bmRlcmluZy1oZXJkLWppdHRlci02M2E1N2IzODkxOWQiLCJwb3N0X2lkIjoiYzIzMjUxNmItZjZmNy00MTgyLTljZDMtYjQxMzcyNTAxYTYwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDQ5OS45MDIsImlzcyI6Im9yY2hpZCJ9.CIWotTYT3bEmxkhn8if7X5s3TK5HK1brTM9l1nmic6w
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9SdWJ5X29uX1JhaWxzIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.HUtzLo9_Weu5RvEj-WO2DEqT7mzLljPNqQigh_d1vv4
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VkZ2VndWlkZXMucnVieW9ucmFpbHMub3JnL2FjdGl2ZV9qb2JfYmFzaWNzLmh0bWwiLCJwb3N0X2lkIjoiYzIzMjUxNmItZjZmNy00MTgyLTljZDMtYjQxMzcyNTAxYTYwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDQ5OS45MDIsImlzcyI6Im9yY2hpZCJ9.FaIp0wnQrBFIq9sKuYPG0QiPdAKFXPlnvLwSj4fad04
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9TaWRla2lxIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.CWRJknTAjkzGfdKIhI4Jy7Ri4k2SBbKkz9v9RAs-9CU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vcnVieS1zaG9yeXVrZW4vc2hvcnl1a2VuIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.VSjelA1eaEHurGgkQZXi3osvogorkE_CTEYJiQBtLxw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VkZ2VhcGkucnVieW9ucmFpbHMub3JnL2NsYXNzZXMvQWN0aXZlSm9iL1F1ZXVlQWRhcHRlcnMuaHRtbCIsInBvc3RfaWQiOiJjMjMyNTE2Yi1mNmY3LTQxODItOWNkMy1iNDEzNzI1MDFhNjAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NDk5LjkwMiwiaXNzIjoib3JjaGlkIn0.k8NYSPdMz4nfpnQHRmQlhc_gvFN_Fs7rVIaUjk7c6Ps
http://www.quastor.org

Here’s the architecture of the Disputes API service.

Merchants interact via SDKs with the Disputes API. Once submitted, Braintree

enqueues a job to AWS Simple Queue Service to be processed.

ActiveJob then manages the jobs in SQS and handles their execution by talking to

various Processor services in Braintree’s backend.

The Problem

Braintree set up the Disputes API, ActiveJob and the Processor services to autoscale

whenever there was an increase in traffic.

Despite this, engineers were seeing a spike in failures in ActiveJob whenever traffic went

up. They have a robust retry logic setup so that jobs that fail will be retried a certain

number of times before they’re pushed into the dead letter queue (to store messages that

failed so engineers can debug them later).

The retry logic had ActiveJob attempt the retries again after a set time interval, but the

retries were failing again.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9EZWFkX2xldHRlcl9xdWV1ZSIsInBvc3RfaWQiOiJjMjMyNTE2Yi1mNmY3LTQxODItOWNkMy1iNDEzNzI1MDFhNjAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NDk5LjkwMiwiaXNzIjoib3JjaGlkIn0.320svKEuBZdRosdoRI7FfgSAno-8d0_p9nE8IHmmRGU
http://www.quastor.org

The issue was a classic example of the thundering herd problem. As traffic increased

(and ActiveJob hadn’t autoscaled up yet), a large number of jobs would get queued in

parallel. They would then hit ActiveJob and trample down the Processor services

(resulting in the failures).

Then, these failed jobs would retry on a static interval, where they’d also be combined

with new jobs from the increasing traffic, and they would trample the service down

again. The original jobs would have to be retried as well as new jobs that failed.

This created a cycle that kept repeating until the retries were exhausted and eventually

DLQ’d (placed in the dead letter queue).

To solve this, Braintree used a combination of two tactics: Exponential Backoff and

Jitter.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9UaHVuZGVyaW5nX2hlcmRfcHJvYmxlbSIsInBvc3RfaWQiOiJjMjMyNTE2Yi1mNmY3LTQxODItOWNkMy1iNDEzNzI1MDFhNjAiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NDk5LjkwMiwiaXNzIjoib3JjaGlkIn0.aPZuhGDgiYgsUwEcryXN9Y_mTjVZQvt32WTds73xE3A
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RvY3MuYXdzLmFtYXpvbi5jb20vQVdTU2ltcGxlUXVldWVTZXJ2aWNlL2xhdGVzdC9TUVNEZXZlbG9wZXJHdWlkZS9zcXMtZGVhZC1sZXR0ZXItcXVldWVzLmh0bWwiLCJwb3N0X2lkIjoiYzIzMjUxNmItZjZmNy00MTgyLTljZDMtYjQxMzcyNTAxYTYwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDQ5OS45MDIsImlzcyI6Im9yY2hpZCJ9.KcXWqUSxViJ8VrfqXBoRsJr1TXOCHoLUKGK62LIIhv4
http://www.quastor.org

Exponential Backoff

Exponential Backoff is an algorithm where you reduce the rate of requests exponentially

by increasing the amount of time delay between the requests.

The equation you use to calculate the time delay looks something like this…

time delay between requests = (base)^(number of requests)

where base is a parameter you choose.

With this, the amount of time between requests increases exponentially as the number

of requests increases.

However, exponential backoff alone wasn’t solving Braintree’s problems.

By just using exponential backoff, the retries + new jobs still weren't spread out enough

and there were clusters of jobs that all got the same sleep time interval. Once that time

interval passed, these failed jobs all flooded back in and trampled over the service again.

To fix this, Braintree added jitter (randomness).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9FeHBvbmVudGlhbF9iYWNrb2ZmIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.toJyqvZRPSgdKN8zGZ5X__AjiotqshKLBWuEfVza1y4
http://www.quastor.org

Jitter

Jitter is where you add randomness to the time interval the requests that you’re

applying exponential backoff to.

To prevent the requests from flooding back in at the same time, you’ll spread them out

based on the randomness factor in addition to the exponential function. By adding jitter,

you can space out the spike of jobs to an approximately constant rate between now and

the exponential backoff time.

Here’s an example of calls that are spaced out by just using exponential backoff.

The time interval between calls is increasing exponentially, but there are still clusters of

calls between 0 ms and 250 ms, near 500 ms, and then again near 900 ms.

In order to smooth these clusters out, you can introduce randomness/jitter to the time

interval.

With Jitter, our time delay function looks like

time delay between requests = random_between(0, (base)^(number of requests))

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2F3cy5hbWF6b24uY29tL2J1aWxkZXJzLWxpYnJhcnkvdGltZW91dHMtcmV0cmllcy1hbmQtYmFja29mZi13aXRoLWppdHRlci8jSml0dGVyIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.sHpBotRhjI_JmtjnWew5rHRFRfeOdCRc2RW-vSDErjg
http://www.quastor.org

This results in a time delay graph that looks something like below.

Now, the calls are much more evenly spaced out and there’s an approximately constant

rate of calls.

For more details, you can read the full article by Braintree here.

Here’s a good article on Exponential Backoff and Jitter from the AWS Builders Library,

if you’d like to learn more about that.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vcGF5cGFsLXRlY2gvdGh1bmRlcmluZy1oZXJkLWppdHRlci02M2E1N2IzODkxOWQiLCJwb3N0X2lkIjoiYzIzMjUxNmItZjZmNy00MTgyLTljZDMtYjQxMzcyNTAxYTYwIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDQ5OS45MDIsImlzcyI6Im9yY2hpZCJ9.CIWotTYT3bEmxkhn8if7X5s3TK5HK1brTM9l1nmic6w
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2F3cy5hbWF6b24uY29tL2Jsb2dzL2FyY2hpdGVjdHVyZS9leHBvbmVudGlhbC1iYWNrb2ZmLWFuZC1qaXR0ZXIvIiwicG9zdF9pZCI6ImMyMzI1MTZiLWY2ZjctNDE4Mi05Y2QzLWI0MTM3MjUwMWE2MCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ0OTkuOTAyLCJpc3MiOiJvcmNoaWQifQ.AhSCoUrJdC4u8_RzxsHYk4TVYc4LIkprTgMiivO7CNc
http://www.quastor.org

How Twitch Processes Millions of Video Streams

Twitch is a live streaming platform where content creators can stream live video to an

audience. There are millions of broadcasters on the platform and tens of millions of

daily active users. At any given time, millions of people are streaming video through the

Twitch platform (on web, mobile, smart TV, etc.)

Twitch’s Video Ingest team is responsible for developing the distributed systems and

services that

● Acquire live streams from Twitch content creators

● Perform real-time processing (transcoding, compression, etc.)

● Provide a high throughput control plane to make the video available for

world-wide distribution with low latency

Eric Kwong, Kevin Pan, Christopher Lafata and Rohit Puri are software engineers on the

Video Ingest team and they wrote a great blog post on their infrastructure/architecture,

problems they encountered and solutions they employed.

Here’s a summary

Twitch maintains nearly a hundred servers (Points of Presence or PoPs) in different

geographic regions around the world that streamers and viewers can connect to for

uploading/downloading video.

These Points of Presence (PoPs) are connected through Twitch’s private Backbone

Network, which is dedicated to transmitting their content. Relying on the public

Internet would be susceptible to bottlenecks/instability so instead, 98% of all Twitch

traffic remains on their private network.

Between the PoPs are origin data centers, which are also geographically distributed.

These origin data centers handle tasks around video processing (like transcoding a

livestream into different bitrates/formats for all the various devices that viewers may be

using).

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9UcmFuc2NvZGluZyIsInBvc3RfaWQiOiI0YTBiYTkzYi0wOWZkLTQyOTgtODExMi0xZWFlY2RhOGNmYWIiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYwLjA1MiwiaXNzIjoib3JjaGlkIn0.4Tz_mZoLHLfquIAJGHtMMCRvm0gQgofeCUO4KUEu9GU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9EYXRhX2NvbXByZXNzaW9uI1ZpZGVvIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.LPqmODQut7zFQMeAs3PKwm4O5Cu_U4GZRevPAnnNDAE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db250cm9sX3BsYW5lIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.qEaT1r-k9fynl_RnW6ec7PbqjqlZhsT1FGvhvR895vM
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Jsb2cudHdpdGNoLnR2L2VuLzIwMjIvMDQvMjYvaW5nZXN0aW5nLWxpdmUtdmlkZW8tc3RyZWFtcy1hdC1nbG9iYWwtc2NhbGUvIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.03J31FZS16W_J7FNq7MfF9OAQTcDnP-ZQ0Z-fNIREAk
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9CYWNrYm9uZV9uZXR3b3JrIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.MO19YEoAbMGVM6RUfh04jQwnMtNuhe1HsKnV8pdaHfA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9CYWNrYm9uZV9uZXR3b3JrIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.MO19YEoAbMGVM6RUfh04jQwnMtNuhe1HsKnV8pdaHfA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9CaXRfcmF0ZSNWaWRlbyIsInBvc3RfaWQiOiI0YTBiYTkzYi0wOWZkLTQyOTgtODExMi0xZWFlY2RhOGNmYWIiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYwLjA1MiwiaXNzIjoib3JjaGlkIn0.V064lxt3kOqzpwthFC9w-ZuZguT0pTXKFt91GeMyuB0
http://www.quastor.org

Video travels from a streamer’s computer to a PoP. From there, it’s sent to an origin

data center for processing and then transmitted to all the PoPs that are close to the

stream’s viewers. This is all done over Twitch’s Backbone network.

Previously, all the PoPs ran HAProxy (a reverse proxy that is commonly used for load

balancing) for forwarding the video streams to the origin data centers. However, Twitch

faced several issues with this approach as they scaled.

Inefficient Usage of Origin Data Center Resources - Each PoP was configured to send

its video streams to a specific origin data center (located in the same geographic area as

the PoP). This meant that the origin data centers for a region ran at full load during the

busy hours of that geographic area, but utilization became very minimal outside of that

time period. When one region has minimal utilization, another geographic region might

be having their busy hours but they couldn’t take advantage of the origin data centers of

the minimal utilization region.

Difficult to Handle Unexpected Changes - The relatively static nature of the HAProxy

configuration also made it difficult to handle unexpected surges of live video traffic.

Reacting to system fluctuations like the loss of capacity of an origin data center was also

very difficult.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9IQVByb3h5IiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.kB7V2RDPpzH3jzmA8iVC7tKNXJ-RQ3_pASmBrG-k9lo
http://www.quastor.org

Creating Intelligest

Twitch decided to revamp the software in their PoPs and completely retire HAProxy.

To replace it, they developed Intelligest, a proprietary ingest routing system that could

intelligently distribute live video ingest traffic from the PoPs to the origins.

The Ingest architecture consists of two components: the Intelligest Media Proxy and the

Intelligest Routing Service (IRS). The Intelligest Media Proxy is a data plane component

so it runs in all the PoPs and sends the video streams to various origin data centers. The

Intelligest Routing Service is a control plane and tells the Intelligest Media Proxy which

origin data center to send the video to.

When a broadcaster starts streaming, his computer will transmit video to the nearest

Twitch Point of Presence (PoP) server. The Intelligest Media Proxy is running on that

PoP and it will extract all the relevant metadata from the stream.

It will then query the Intelligest Routing Service (IRS) and ask which origin data center

it should route the video stream to. The IRS service has a real-time view of all of

Twitch’s infrastructure and it will make a routing decision based on minimizing latency

for the viewers and maximizing utilization of compute resources in all the origins.

The IRS service will send its decision back to the Intelligest Media Proxy, which can

then route the video stream to the selected origin data center.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9EYXRhX3BsYW5lIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.N22GVTLosCYoE-8yP3X2xS29ZIRQ8r0kQ47svbR7vVU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db250cm9sX3BsYW5lIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.qEaT1r-k9fynl_RnW6ec7PbqjqlZhsT1FGvhvR895vM
http://www.quastor.org

The Intelligest Routing Service relies on two other services implemented in AWS:

Capacitor and The Well.

Capacitor monitors the compute resources in every origin and keeps track of any

capacity fluctuations (due to maintenance/failures).

The Well monitors the backbone network and provides information about the status of

network links so latency issues are minimized.

The IRS service uses a randomized greedy algorithm to compute routing decisions based

on compute resources available, backbone network bandwidth and other factors.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9HcmVlZHlfcmFuZG9taXplZF9hZGFwdGl2ZV9zZWFyY2hfcHJvY2VkdXJlIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.tGoGI3lNNalD2SxXTes59Ik0QWbKq1NpS72edmbLXtg
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Jsb2cudHdpdGNoLnR2L2VuLzIwMjIvMDQvMjYvaW5nZXN0aW5nLWxpdmUtdmlkZW8tc3RyZWFtcy1hdC1nbG9iYWwtc2NhbGUvIiwicG9zdF9pZCI6IjRhMGJhOTNiLTA5ZmQtNDI5OC04MTEyLTFlYWVjZGE4Y2ZhYiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjAuMDUyLCJpc3MiOiJvcmNoaWQifQ.03J31FZS16W_J7FNq7MfF9OAQTcDnP-ZQ0Z-fNIREAk
http://www.quastor.org

How Image Search works at Dropbox

Dropbox is a file hosting and sharing company with over 700 million registered users.

Photos are among the most common types of files uploaded to Dropbox. The Dropbox

app allows users to set up camera sync so that any photo they take on their smart phone

will automatically get synced and stored in their Dropbox account.

To make it easier for people to find their photos, Dropbox built an image search feature

where you can search for objects/scenery/action and Dropbox will find images that

contain what you searched for.

For example, if you search for “picnic”, then Dropbox will find your images that contain

a picnic.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Thomas Berg is a Machine Learning Engineer at Dropbox and he wrote a great blog post

summarizing how this feature works.

Here's a summary

Dropbox’s Approach

To build this, Dropbox relies on two areas of machine learning

● Image Classification

● Word Vectors

Image Classification

An image classifier takes in the pixel values of an image and outputs a list of things that

the image contains (where each of these things are categories that the classifier is

trained to recognize).

There has been tremendous progress over the last 10 years in image classification with

the innovations in deep learning, specifically convolutional neural networks. Model

architecture improvements, better training methods, large datasets, faster GPUs and

more have resulted in image classifiers that can recognize thousands of different

categories with extremely high accuracy.

For Dropbox’s image search, their image classifier is an EfficientNet network trained on

the OpenImages dataset. This produces classification scores for ~8500 categories

ranging from grapes to telephone to picnic and much more.

However, an issue that comes up with image classification is synonyms. What if a user

searches for seashore but the image classifier is trained on the term beach?

To solve this, Dropbox used word vectors.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Ryb3Bib3gudGVjaC9tYWNoaW5lLWxlYXJuaW5nL2hvdy1pbWFnZS1zZWFyY2gtd29ya3MtYXQtZHJvcGJveCIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.O-whGMYcaiGDSmRAfC3OO3PtMTyhiT-72x-IDiE3ijM
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db252b2x1dGlvbmFsX25ldXJhbF9uZXR3b3JrIiwicG9zdF9pZCI6ImMyODc5MGIxLTkyNjItNDI3MS04NGMyLWJkZTgwNTc2ZDc0MSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjEuNTU4LCJpc3MiOiJvcmNoaWQifQ.51gwHnoxkVKN8m8zJ9DkEWIUhirdrkMe3KvOVpi73Lk
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwOi8vcHJvY2VlZGluZ3MubWxyLnByZXNzL3Y5Ny90YW4xOWEuaHRtbCIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.ZyUr2ocd1PlZQVVgbUKWdgc9AOOdHGkj5Ww8Ozm8bUg
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3N0b3JhZ2UuZ29vZ2xlYXBpcy5jb20vb3BlbmltYWdlcy93ZWIvaW5kZXguaHRtbCIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.JlO3uA_UPFMA5HSw3U9IOfUYKl6kFFpapykljvaclfE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Xb3JkX2VtYmVkZGluZyIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.EbEfLCd8Gl0Scb4OXCsreuBDeODAfzvh2YHLOXFYy5U
http://www.quastor.org

Word Vectors

Word vectors are an extremely important technique in natural language processing that

really took off in 2013 with Word2vec.

The idea is that you have a vector space with hundreds of dimensions (your standard

X-Y cartesian coordinate system could be viewed as an example of a 2 dimensional

vector space).

Then, you use a neural network to map every word to a vector in the vector space. For

each word, the neural network will assign a number for each of the hundreds of different

dimensions.

You train the neural network so that words with similar meanings will be assigned

vectors that are close to each other in vector space. Here's a great article that dives

deeper into Word2vec.

Dropbox used the ConceptNet Numberbatch pre-computed word embeddings. This gave

them good results in their testing and the word embeddings also support multiple

languages, so they return close vectors for words in different languages with similar

meanings. This makes supporting image search in multiple languages much easier.

If there’s a multi-word image search, Dropbox parses the query as an AND of the

individual words. They also maintain a list of multi-word terms like beach ball that they

can match for.

Production Architecture

When a user submits a search query, it’s obviously not possible to immediately run

image classification on all of their images. Users can have tens of thousands of images in

their dropbox account, so that solution would be way too slow.

Instead, Dropbox uses an Inverted Index data structure (also used by many Full-Text

search engines like Elasticsearch). You can think of an Inverted Index as very similar to

the Index section at the back of the textbook where it contains a list of all the words in

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Xb3JkMnZlYyIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.3EUzopxwI30qrsC1U4rEtLJSQWz3b1naZqoe4zlTWgM
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9WZWN0b3Jfc3BhY2UiLCJwb3N0X2lkIjoiYzI4NzkwYjEtOTI2Mi00MjcxLTg0YzItYmRlODA1NzZkNzQxIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2MS41NTgsImlzcyI6Im9yY2hpZCJ9.OLi_XkkDq7F3CTwEhlVYfQczCMJs74WDjnxXVX6Nn1M
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2phbGFtbWFyLmdpdGh1Yi5pby9pbGx1c3RyYXRlZC13b3JkMnZlYy8iLCJwb3N0X2lkIjoiYzI4NzkwYjEtOTI2Mi00MjcxLTg0YzItYmRlODA1NzZkNzQxIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2MS41NTgsImlzcyI6Im9yY2hpZCJ9.-EqxHW0SVwJXT-K4p4DWqy9yDz_mhRt4u7KSpv28JKQ
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vY29tbW9uc2Vuc2UvY29uY2VwdG5ldC1udW1iZXJiYXRjaCIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.1Ir5mOLamPhQ1cNnLWmgscgQn_eq-NlEfCt0IlS1l68
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9JbnZlcnRlZF9pbmRleCIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OCwiaXNzIjoib3JjaGlkIn0.9equ5HjqBrww9-4H4c5nekmQnPHuY3JUzhC0tFRMWHc
http://www.quastor.org

the book and the corresponding page numbers where each word is mentioned. An

Inverted Index contains a mapping from all the unique words/phrases in the text to

their locations in the documents.

Dropbox will scan through all the images in a user’s account and run their image

classification algorithm to find all the categories (things) that appear in that image. They

convert whatever categories are found into the corresponding word embedding vectors.

Then, they create an Inverted Index where for each category, they have a list of images

that contain that thing.

When a user searches for a word, Dropbox will first find the word vector for that term.

Then, they'll find the closest word vectors that are categories for the image classifier.

They'll query the inverted index to find the matching images for these categories and

then rank the matching images based on how strong the classifier ranked each category

in the image.

For more details and some additional optimizations Dropbox made, you can view the

full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Ryb3Bib3gudGVjaC9tYWNoaW5lLWxlYXJuaW5nL2hvdy1pbWFnZS1zZWFyY2gtd29ya3MtYXQtZHJvcGJveCIsInBvc3RfaWQiOiJjMjg3OTBiMS05MjYyLTQyNzEtODRjMi1iZGU4MDU3NmQ3NDEiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYxLjU1OSwiaXNzIjoib3JjaGlkIn0.0XDfifN1NVKWyzS12VYAE36IdQbaHT5fZJTUbdRWJz8
http://www.quastor.org

How Instagram Suggests New Content

Instagram is a social media app with more than 2 billion active users. In order to keep

users engaged, the company dedicates a ton of resources to making sure the posts in a

user’s feed are relevant, fresh and interesting.

Instagram launched a Suggested Posts feature where they recommend posts a user may

enjoy from accounts the user isn’t following and they place those posts in the user’s feed.

The goal is to make it easier for users to find new accounts to follow.

Amogh Mahapatra is a machine learning engineer at Meta and he wrote a great blog

post on how Instagram implemented this feature.

Here’s a summary

Instagram’s suggested posts feature will find photos/video posts that you may like from

accounts that you don’t follow. This results in you finding more content you like,

following more accounts and spending more time on Instagram.

This feature is an example of the Information Retrieval problem, where you have a large

set of documents (Instagram posts) and you want to find certain documents based on a

set of criteria.

Information Retrieval systems typically have a two-step design

1. Candidate Generation - based on the user’s interests, fetch all the candidates

that a user could be interested in. In this case, Instagram is looking for all the

possible posts from accounts the user doesn’t follow that he/she may be

interested in.

2. Candidate Selection/Scoring - rank the candidates and select the best subset

to show to the user. In this scenario that means looking at the potential posts

from the candidate generation stage and selecting the best few posts that will

be shown to the user as Suggested Posts in their feed.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLmZiLmNvbS8yMDIyLzA4LzEyL3dlYi9ob3ctaW5zdGFncmFtLXN1Z2dlc3RzLW5ldy1jb250ZW50LyIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5NywiaXNzIjoib3JjaGlkIn0.3f0DCOVUmUnaIDwrP7P8_ruOF0BcSaHKHkzA-t94MTc
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLmZiLmNvbS8yMDIyLzA4LzEyL3dlYi9ob3ctaW5zdGFncmFtLXN1Z2dlc3RzLW5ldy1jb250ZW50LyIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5NywiaXNzIjoib3JjaGlkIn0.3f0DCOVUmUnaIDwrP7P8_ruOF0BcSaHKHkzA-t94MTc
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9JbmZvcm1hdGlvbl9yZXRyaWV2YWwiLCJwb3N0X2lkIjoiODIyNmEyYmYtNTljOS00NjUyLTgwNzEtMDdmMzEzY2ExMDgzIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2Mi4xOTgsImlzcyI6Im9yY2hpZCJ9.ANPQKla0g0OsJQ_4o0zJPTIcuQJb6VHD8e229jveBs8
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RldmVsb3BlcnMuZ29vZ2xlLmNvbS9tYWNoaW5lLWxlYXJuaW5nL3JlY29tbWVuZGF0aW9uL292ZXJ2aWV3L2NhbmRpZGF0ZS1nZW5lcmF0aW9uIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk4LCJpc3MiOiJvcmNoaWQifQ.1Z-DoJPfK1qRbV2o5ZfZaqrgw4OkD0Zz6MbGHh2gD4k
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RldmVsb3BlcnMuZ29vZ2xlLmNvbS9tYWNoaW5lLWxlYXJuaW5nL3JlY29tbWVuZGF0aW9uL2Rubi9zY29yaW5nIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk4LCJpc3MiOiJvcmNoaWQifQ.pyUB7rWr0v_LAR_YLFNQbks4bUMM4bH2K7ojZXWg9Rs
http://www.quastor.org

How Instagram does Candidate Generation

The first step is to search for posts that a user may like from accounts the user isn’t

following. To do this, Instagram relies on user embeddings and co-occurrence based

similarity.

User embeddings are a popular technique in building recommendation systems, where

you use a machine learning model to generate a vector that represents a user. The vector

is a series of numbers (magnitudes) in various dimensions. These numbers are chosen

by the ML model based on the user’s engagement data so users who have similar

engagement data will get similar numbers. You can find the most similar accounts to the

user by looking at other accounts that are nearby in vector space (using something like

Cosine similarity).

This is based on word embeddings, where you generate a vector representation of a

word based on the meaning and usage of that word. We talked about word embeddings

in a previous article on how Dropbox implemented their image search feature.

Instagram also uses a technique called Co-occurrence Similarity, which comes from

frequent pattern mining. They look at user data to see what media users are engaging

with and look for any co-occurring accounts (accounts that also get engagement from

those users). Then, they calculate co-occurrence frequencies of media pairs and use

them for Candidate Generation. For example, there may be a lot of users who like posts

from the Golden State Warriors and also from the Los Angeles Lakers (two NBA teams).

Users who follow one team and not the other might benefit from getting the other

team’s posts as Suggested Posts.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9WZWN0b3JfKG1hdGhlbWF0aWNzX2FuZF9waHlzaWNzKSIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.YoBGDfRmZcnkdZcU8qmayVjLNnYRXfCRXOZME6WNS_Y
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db3NpbmVfc2ltaWxhcml0eSIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.Xsb9n_RzzsRfxtINV8wKrKqMS9l1g3IN-WFQqhY7js0
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Xb3JkX2VtYmVkZGluZyIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.NLOnxDJpDCMeF8MfXLJFzbuECx3II1pNVaVILd2A0aA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Jsb2cucXVhc3Rvci5vcmcvcC9kcm9wYm94LWltcGxlbWVudGVkLWltYWdlLXNlYXJjaC1mZWF0dXJlIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk4LCJpc3MiOiJvcmNoaWQifQ.2EzVHP8aj6EYfTRpzMgeG_5gZCj3nqOOciiBzzsG7Ww
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9GcmVxdWVudF9wYXR0ZXJuX2Rpc2NvdmVyeSIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.qoZYZQxmF78TJ0DiNYzDKqA4MoDm90oJ1gXeIj6fuLE
http://www.quastor.org

Cold Start Problem

An issue that you’ll frequently see with recommender systems is the Cold Start problem,

where the system performs poorly for new users due to a lack of data.

Instagram deals with this in two ways:

● Popular Media - For extremely new users who don’t follow anyone / haven’t

engaged with any content, Instagram will recommend posts that are popular

with the general instagram user base. The recommendation algorithm can

then adjust based on the user’s response to those initial posts.

● Fallback Graph Exploration - If a user hasn’t engaged with any content but

follows other accounts, Instagram will generate candidates for them by

evaluating their one-hop and two-hop connections. They’ll look at accounts

followed by the user and see what posts those accounts liked and use that to

generate candidates.

How Instagram does Candidate Selection

The candidate generation step generates a group of potential Suggested Posts. In the

candidate selection stage, machine learning models are used to pick the best few posts

that’ll be shown to the user.

To do this, Instagram uses a ton of different data points and various machine learning

models. Many of the data points are also generated using ML models.

Some of the data points considered are

● Probability of user engagement

● Content quality of the image/video

● Past Author-Viewer interactions/engagement

● User embeddings

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db2xkX3N0YXJ0XyhyZWNvbW1lbmRlcl9zeXN0ZW1zKSIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.tlcZBAdLq9KpLUtptkoWoSacxIWf8VY07raN_WD-P5c
http://www.quastor.org

And much more.

Some of the models used are

● Log-linear models

● Gradient Boosted Decision Trees

● Multi Task Multi label Sparse Neural Nets (MTML)

In order to select the best models, hyperparameters, etc. Facebook relies on online A/B

testing and offline simulations. The offline simulations work by replaying a user’s

actions (their likes, comments, shares, etc.) to different models and training them to

predict the user’s actions. Then, these engagement prediction models can be used to

evaluate candidate ranking models.

Offline simulation can’t replace A/B testing since there are many behavioral dynamics

that are too complicated to model, but it provides a higher throughput alternative to

quickly evaluate model performance. You can read more about offline simulation at

Meta here.

For more details on Instagram’s Suggested Post feature, read the full article here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Mb2ctbGluZWFyX21vZGVsIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk4LCJpc3MiOiJvcmNoaWQifQ.qYiPn6xm87dzxc3ZYgaV9r2et4ejAq8uks7ZRwtx5sc
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9HcmFkaWVudF9ib29zdGluZyNHcmFkaWVudF90cmVlX2Jvb3N0aW5nIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk4LCJpc3MiOiJvcmNoaWQifQ.QwOTxf0oDTh-gpKUy2cDncUqeiMCvrb5YVRUoEQh6io
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2FyeGl2Lm9yZy9wZGYvMTkxMS4wNTAzNC5wZGYiLCJwb3N0X2lkIjoiODIyNmEyYmYtNTljOS00NjUyLTgwNzEtMDdmMzEzY2ExMDgzIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2Mi4xOTgsImlzcyI6Im9yY2hpZCJ9.jOUEevLPaQPpsTjsIf8b4-cV67iWN2QrQJ001OpboQI
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2FpLmZhY2Vib29rLmNvbS9ibG9nL29ubGluZS1hbmQtb2ZmbGluZS10ZXN0cy10by1pbXByb3ZlLW5ld3MtZmVlZC1yYW5raW5nLyIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.wIwABFNfOEOYkpztWy2MGJKZTsGCKt7ivxs15lIT1O0
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLmZiLmNvbS8yMDIyLzA4LzEyL3dlYi9ob3ctaW5zdGFncmFtLXN1Z2dlc3RzLW5ldy1jb250ZW50LyIsInBvc3RfaWQiOiI4MjI2YTJiZi01OWM5LTQ2NTItODA3MS0wN2YzMTNjYTEwODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYyLjE5OCwiaXNzIjoib3JjaGlkIn0.MvMULssAC6l3leNY1r-TswhcBUOevxy_XB_aeifV2pU
http://www.quastor.org

How Snapchat Works

Snapchat is an instant messaging app with over 300 million daily active users. The

company uses a multi-cloud strategy relying heavily on AWS and Google Cloud

Platform.

Saral Jain is the Senior Director of Engineering at Snap Inc where he leads the Cloud

Infrastructure, Data and IT organizations. He gave a great interview on the AWS series

This is my Architecture.

He discussed the process of what happens on the backend when a user sends/receives a

snap on the app (sends or receives an image/video). This is for a video series by AWS, so

unfortunately he only talks about the AWS architecture.

Here’s a summary

For their AWS stack, Snap runs their backend on Elastic Kubernetes Service (EKS) and

they use more than 900 EKS clusters where many of the clusters have 1000+ instances.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3lvdXR1LmJlL0NndjBrZnBfNnhRIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk5LCJpc3MiOiJvcmNoaWQifQ.gn3GnLWW-WfDQatN1_qArHvrb_9m6WjoITWDZk3AUjE
http://www.quastor.org

The core services involved in sending and receiving snaps are the

● Media Delivery Service

● Core Orchestration Service

● Friend Graph

● Snap DB

When a user sends a snap from their mobile device, their phone will talk to Snapchat’s

API Gateway.

The Gateway will communicate with the Media Delivery Service to send the

picture/video to AWS CloudFront (AWS’ Content Delivery Network) and also persist it

in S3. The media will be given a media ID that it can be referenced through.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Once the media has been persisted, Snap’s Orchestration service will query Snapchat’s

friend graph to make sure that the sender has the permissions to send the picture/video

to the recipient (they should be friends on Snapchat).

If the permissions check passes, the Orchestration service will persist the conversation

metadata (including the media ID) into Snap DB. Snap DB is Snapchat’s custom

database that is built on top of DynamoDB (a proprietary NoSQL database by AWS).

They store nearly 400 terabytes of data in DynamoDB.

The team created their own database as a frontend to DynamoDB to add higher level

features to meet Snap’s specific use cases. Snap has to deal with a lot of ephemeral data

so they added optimizations for that and also TTL and custom transactions to reduce

costs.

For receiving a snap, the orchestration service will look up a connection ID from

ElasticCache, to get access to the persistent connection that Snap servers have with the

clients who have the app open.

The service looks at the conversation metadata to get the media ID of the picture/video.

The content is retrieved from CloudFront and then sent to the recipient’s device.

If the recipient doesn’t have the app open, then Snapchat relies on Apple Push

Notification Service or Firebase Cloud Messaging.

For more details, you can watch the full video here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3lvdXR1LmJlL0NndjBrZnBfNnhRIiwicG9zdF9pZCI6IjgyMjZhMmJmLTU5YzktNDY1Mi04MDcxLTA3ZjMxM2NhMTA4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjIuMTk5LCJpc3MiOiJvcmNoaWQifQ.gn3GnLWW-WfDQatN1_qArHvrb_9m6WjoITWDZk3AUjE
http://www.quastor.org

How Netflix Implemented Load Shedding

The API Gateway sits between the backend and the client and it handles things like rate

limiting, authentication, monitoring and routing requests to all the various backend

services.

There are a ton of different tools you can use for an API Gateway like Nginx, Zuul (by

Netflix), Envoy (by Lyft), offerings from all the major cloud providers, etc.

One feature that many API gateways provide is load shedding, where you can configure

the gateway to automatically drop certain requests and ignore them. This is crucial for

times when you face a spike in traffic or if something’s wrong with your backend (and

you can’t handle the usual traffic).

Non-critical requests like logging or background requests can be dropped/shed by the

API gateway so that critical requests (that impact the user experience) have fewer

failures.

Netflix built and maintains a popular API Gateway called Zuul and they gave a great talk

at AWS Re:Invent 2021 about how they designed and tested Zuul’s prioritized load

shedding feature for their internal use.

Here’s a summary

Despite all the effort Netflix engineers put into developing resiliency, there are still

many different incidents that degrade user experience.

Whether it’s something like under-scaled services, network blips, cloud provider

outages, bugs in code or something else, engineers need to ensure that the end user

experience is minimally affected. Netflix is a movie/tv-show streaming website, so this

means that users should still be able to stream their movies and TV shows on their

phone/laptop/TV/gaming console.

To ensure high availability, Netflix uses the load-shedding technique where low priority

requests are dropped when the system is under severe strain.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vTmV0ZmxpeC96dXVsIiwicG9zdF9pZCI6ImRmM2Y5OTI0LWRlZWEtNGJlZS1iZmVkLWYwZDQ1OTgwZjU3NiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuMzA3LCJpc3MiOiJvcmNoaWQifQ.Icqv8ZgTycdQm60wh_NHOP5w-80to9UO8N2_EHs4iUI
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3lvdXR1LmJlL1RtTmlIYmgtNldnIiwicG9zdF9pZCI6ImRmM2Y5OTI0LWRlZWEtNGJlZS1iZmVkLWYwZDQ1OTgwZjU3NiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuMzA3LCJpc3MiOiJvcmNoaWQifQ.zSQ5uEcIDk3OU4Ckmrroj43ib5rNMjB5rwbpdaS42eU
http://www.quastor.org

An example of a request that can be dropped is requests for show trailers. When a user

is scrolling through Netflix, the website will autoplay the trailer of whatever movie/TV

show the user currently has selected.

If the system is under severe strain, then Netflix will ignore these requests and the client

will fall-back on just displaying the show’s image and not playing any trailer. This

doesn’t result in a severe degradation in user experience and it allows the system to

prioritize requests that directly relate to the streaming experience for users.

In order to implement prioritized load shedding, Netflix engineers went through 3 steps

1. Define a Request Taxonomy - Create a way to categorize requests by priority

and assign a score to each request that describes how critical the request is to

the user streaming experience.

2. Implement the Load Shedding Algorithm - Netflix chose to implement it in

their API Gateway, Zuul

3. Validate Assumptions using Fault Injection - The Chaos Engineering

discipline started at Netflix and the company uses those principles for testing

system resilience in a scientific way.

We’ll go through each of these steps

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vTmV0ZmxpeC96dXVsIiwicG9zdF9pZCI6ImRmM2Y5OTI0LWRlZWEtNGJlZS1iZmVkLWYwZDQ1OTgwZjU3NiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuMzA3LCJpc3MiOiJvcmNoaWQifQ.Icqv8ZgTycdQm60wh_NHOP5w-80to9UO8N2_EHs4iUI
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9DaGFvc19lbmdpbmVlcmluZyIsInBvc3RfaWQiOiJkZjNmOTkyNC1kZWVhLTRiZWUtYmZlZC1mMGQ0NTk4MGY1NzYiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYzLjMwNywiaXNzIjoib3JjaGlkIn0.BicVY55NNQZlJLmk7objDMou7ie3eialZqufNPma1uE
http://www.quastor.org

Define a Request Taxonomy

Netflix created a scoring system from 0 to 100 that assigns a priority to a request, with 0

being the highest priority and 100 being the lowest priority.

The score was based on 4 dimensions

● Functionality - What functionality gets impacted if this request gets throttled?

Is it important to the user experience? For example, if logging-related

requests are throttled then that doesn’t really hurt the user experience.

● Throughput - Some traffic is higher throughput than others. Logs,

background requests, events data, etc. are higher throughput and they

contribute to a large percentage of load on the system. Throttling them will

have a bigger impact on reducing load.

● Criticality - If this request gets throttled, is there a well-defined fallback that

still delivers an acceptable user experience? For example, if the client’s

request for the movie trailer gets blocked, then the fallback is to just show the

image for the movie. This is acceptable.

● Request State - Was the request initiated by the user? Or was the request

initiated by the Netflix app?

Using these dimensions, the API gateway assigns a priority score to every request that

comes in.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Load Shedding Algorithm

The first decision was where to implement the load shedding algorithm. Netflix decided

to put the logic in their API Gateway, Zuul.

(Note - NLB stands for Network Load Balancer)

When a request comes in to Zuul, the first thing that the gateway does is execute a set of

inbound filters. These filters are responsible for decorating the incoming request with

extra information. This is where the priority score is computed and added to the

request.

With the priority score information, Zuul can now do global throttling. This is where

Zuul will throttle requests below a certain priority threshold. This is meant to protect

the API gateway itself. The metrics used to trigger global throttling are concurrent

requests, connection count and CPU utilization.

Netflix also implemented service throttling, where they can load shed requests for

specific microservices that Zuul is talking to. Zuul will monitor the error rate and

concurrent requests for each of the microservices. If a threshold is crossed for those

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Mb2FkX2JhbGFuY2luZ18oY29tcHV0aW5nKSIsInBvc3RfaWQiOiJkZjNmOTkyNC1kZWVhLTRiZWUtYmZlZC1mMGQ0NTk4MGY1NzYiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYzLjMwNywiaXNzIjoib3JjaGlkIn0.2wzj4ahCGak8yVMoLLbt0g7YI7WbOsSBnG7y0E7hGq8
http://www.quastor.org

metrics, then Zuul will reduce load on the service by throttling traffic above a certain

priority level.

In order to calculate the priority level, Netflix uses a cubic function. When the overload

percentage is at 35%, Netflix will shed any requests that are above 95% priority. When

the overload percentage reaches 80%, then the API Gateway will shed any request with a

priority score of greater than ~50.

Validating Assumptions using Chaos Testing

A Fault Injection experiment is where you methodically introduce disruptive events

(spike in traffic, CPU load, increased latency, etc.) in your testing or production

environments and observe how the system responds.

Netflix routinely runs these types of experiments in their production environment and

have built tools like Chaos Monkey and ChAP (Chaos Automation Platform) to make

this testing easier.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

They created a failure injection point in Zuul that allowed them to shed any request

based on a configured priority. Therefore, they could manually simulate a load shedded

experience and get an idea of exactly how shedding certain requests affected the user.

Engineers staged an A/B test that will allocate a small number of production users to

either a control or treatment group for 45 minutes. During that time period, they’ll

throttle a range of priorities for the treatment group and measure the impact on

playback experience.

This allows Netflix to quickly determine how the load shedding system is performing

across a variety of client devices, client versions, locations, etc.

For more details, you can watch the full talk here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy55b3V0dWJlLmNvbS93YXRjaD92PVRtTmlIYmgtNldnIiwicG9zdF9pZCI6ImRmM2Y5OTI0LWRlZWEtNGJlZS1iZmVkLWYwZDQ1OTgwZjU3NiIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuMzA3LCJpc3MiOiJvcmNoaWQifQ.LRe0QG8DOgcB2HFZSJak6vw_APCf25zd_hxJkeCPZWk
http://www.quastor.org

The Architecture of Facebook’s Distributed

Message Queue

Facebook uses thousands of distributed systems and microservices to power their

ecosystem. In order to communicate with each other, these microservices rely on a

message queue.

Facebook Ordered Queueing Service (FOQS) is an internal Facebook tool that fills that

role. FOQS is a horizontally scalable, persistent, distributed priority queue that’s built

on top of sharded MySQL.

Akshay Nanavati and Girish Joshi are two software engineers at Facebook, and they

wrote a great blog post on how FOQS works and the architecture behind it.

Here’s a Summary

FOQs Use Cases

FOQS is a general purpose priority queue so hundreds of different services across the

Facebook stack rely on it to pass messages. Facebook’s video encoding service, language

translation technologies and notification services are a few examples.

Producer services will enqueue items on to FOQS to be processed. These items can have

a priority and also a delay (if the item processing needs to be deferred). The item will

have a topic, where each topic is a separate priority queue.

Consumer services can dequeue items from a certain topic and process them. If the

processing succeeds, they send an “ack” message back to FOQS. If the processing fails,

then they send a “nack” message back and the items will be redelivered from the priority

queue at a later time.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9NZXNzYWdlX3F1ZXVlIiwicG9zdF9pZCI6IjQ5MWY1NTQxLWJiYjMtNDhhMi1hMWFkLWJlMGEyMjRlNDk0OCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuNzM0LCJpc3MiOiJvcmNoaWQifQ.BZRA-dkr4LX6s2FZDqMS3_Y0RgQNMuYpgCw-MiCiz0o
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLmZiLmNvbS8yMDIxLzAyLzIyL3Byb2R1Y3Rpb24tZW5naW5lZXJpbmcvZm9xcy1zY2FsaW5nLWEtZGlzdHJpYnV0ZWQtcHJpb3JpdHktcXVldWUvIiwicG9zdF9pZCI6IjQ5MWY1NTQxLWJiYjMtNDhhMi1hMWFkLWJlMGEyMjRlNDk0OCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuNzM0LCJpc3MiOiJvcmNoaWQifQ.0zR7rRqfUulTo56BARH9scPXmcDkfIZEOULPijWHGF4
http://www.quastor.org

Building a Distributed Priority Queue

FOQS is organized into namespaces where each namespace has many topics and each

topic has many items.

Namespaces provide a way to separate all the different services/use-cases that are using

FOQS. Each namespace will have many (thousands) of topics, where each topic

represents a single priority queue.

Clients will enqueue and dequeue items to a topic where an item represents a message

with some user specified data.

Each item will have fields for the namespace, topic, priority (a 32 bit integer), payload

(an immutable 10 kilobyte blob), metadata, delivery delay (how long until the item can

be dequeued) and a few other fields.

FOQS provides an API that consists of the following operations

● Enqueue - Add an item to FOQS.

● Dequeue - Accepts a topic and a number where the number signifies how

many items to return from the topic. Items are returned based on priority and

delivery delay.

● Ack - Sends a message that the dequeued item was successfully processed, so

it doesn’t need to be delivered again.

● Nack - Sends a message that the dequeued item needs to be redelivered

because client processing failed. The processing can be deferred, allowing

clients to leverage exponential backoff to give enough of a “cooling-off” period

of buffer.

● GetActiveTopics - returns a list of the topics that have items

We’ll go through how these operations work under the hood.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9FeHBvbmVudGlhbF9iYWNrb2ZmIiwicG9zdF9pZCI6IjQ5MWY1NTQxLWJiYjMtNDhhMi1hMWFkLWJlMGEyMjRlNDk0OCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuNzM0LCJpc3MiOiJvcmNoaWQifQ.CiIyyADlLZxMShXG0TEcK0724E4p4QZplbsTCB8gvMc
http://www.quastor.org

Enqueue

When a client enqueues an item to FOQS, the request gets put on an Enqueue Buffer

and FOQS returns a promise back to the client.

FOQS is built on top of sharded MySQL and each shard has a corresponding worker

node. The workers are reading items from the Enqueue Buffer and inserting them into

their MySQL shard where one database row corresponds to one item.

Once the row insertion is complete, the promise is fulfilled and an enqueue response is

sent back to the client. The response contains a unique string that contains the MySQL

shard’s ID and a 64-bit primary key (that identifies the item in its shard).

FOQS uses a circuit breaker design pattern to avoid sending items to unhealthy MySQL

shards. Health is defined by slow queries or error rate; if either of those cross a

threshold then the corresponding worker will stop accepting more work until it’s

healthy.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Dequeue

The dequeue API accepts a collection of (topic, count) pairs where count represents the

number of items to return from the topic. The items returned are ordered by priority.

Since each topic is sharded, each topic host will need to run a reduce operation across all

the MySQL shards for that topic to find the highest priority items and select those.

To optimize this, FOQS has a data structure called the Prefetch Buffer that works in the

background and fetches the highest priority items across all the shards.

Each shard has an in-memory index of the primary keys of items that are ready to be

delivered on the shard, sorted by priority. The Prefetch Buffer will build its own priority

queue from these indexes using a K-way merge.

The dequeue API just has to read items out of the Prefetch Buffer and return them to the

client.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Gb2xkXyhoaWdoZXItb3JkZXJfZnVuY3Rpb24pIiwicG9zdF9pZCI6IjQ5MWY1NTQxLWJiYjMtNDhhMi1hMWFkLWJlMGEyMjRlNDk0OCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuNzM0LCJpc3MiOiJvcmNoaWQifQ.IB4l7w26-SfkCLHneC0Af0CDA3SH--dcqbgHG3gGmWQ
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9LLXdheV9tZXJnZV9hbGdvcml0aG0iLCJwb3N0X2lkIjoiNDkxZjU1NDEtYmJiMy00OGEyLWExYWQtYmUwYTIyNGU0OTQ4IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2My43MzQsImlzcyI6Im9yY2hpZCJ9.aJXsR1UKiBrcUZfWrYcYSaXdGMXp1zzN01H_79EYzu8
http://www.quastor.org

Ack/Nack

FOQS supports at least once delivery and that’s implemented using Ack/Nack (short for

Acknowledged or Not Acknowledged). An ack signifies that the dequeued item was

successfully processed by the consumer, so the message doesn’t need to be delivered

again. A nack signifies that the item should be redelivered because the consumer client

failed to process it.

When an item is enqueued, FOQS allows the client to specify a lease duration. When

that item gets dequeued, the lease begins. If the item is not acked or nacked within the

lease duration, it is assumed to have failed (nacked) and it’s made available for

redelivery, so that the at least once guarantee is met.

When an item succeeds/fails, the client sends the ack/nack request to FOQS. The shard

ID is contained in the item ID, so the FOQS client uses that ID to locate the specific

FOQS shard that manages that item.

The ack/nack gets sent to a shard-specific in-memory buffer, there are separate buffers

for acks vs. nacks. A worker will pull items from the ack buffer and delete those rows

from the MySQL shard. Similarly, a worker will pull items from the nack buffer and

update that row with a new deliver_after time so the item gets redelivered.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5jbG91ZGNvbXB1dGluZ3BhdHRlcm5zLm9yZy9hdF9sZWFzdF9vbmNlX2RlbGl2ZXJ5LyIsInBvc3RfaWQiOiI0OTFmNTU0MS1iYmIzLTQ4YTItYTFhZC1iZTBhMjI0ZTQ5NDgiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTYzLjczNCwiaXNzIjoib3JjaGlkIn0.TMkujZrJNDnwTsbb4cCJ5RnEpbb4QQKli2b_YwCCOos
http://www.quastor.org

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLmZiLmNvbS8yMDIxLzAyLzIyL3Byb2R1Y3Rpb24tZW5naW5lZXJpbmcvZm9xcy1zY2FsaW5nLWEtZGlzdHJpYnV0ZWQtcHJpb3JpdHktcXVldWUvIiwicG9zdF9pZCI6IjQ5MWY1NTQxLWJiYjMtNDhhMi1hMWFkLWJlMGEyMjRlNDk0OCIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjMuNzM1LCJpc3MiOiJvcmNoaWQifQ.fLccCO4CP5rLOfbFxdnPxrlKCWGheD3kVlFzYL5-sno
http://www.quastor.org

HowMixpanel Fixed their Load Balancing

Problem

Mixpanel is an analytics product that you can embed into your website/app to get

detailed data on how your users are behaving (similar to Google Analytics).

In order to best serve their users, Mixpanel needs to support real-time event ingestion

while also supporting fast analytical queries over all a user’s history.

When a user on a Mixpanel-tracked website clicks a button or navigates to a new page,

that event needs to be ingested and stored in Mixpanel in under a minute (real-time

event ingestion).

If a Mixpanel customer wants to see the number of sign up conversion events over the

past 6 months, they should be able to query that data quickly (fast analytical queries).

Mixpanel accomplishes this with their in-house database, Arb. They leverage both

row-oriented and column-oriented data formats where row-oriented works better for

real-time event ingestion and column-oriented works well for analytical queries. This is

based on the classic Lambda Architecture where you have a speed layer for real-time

views and a batch layer for historical data.

If you're interested in learning more about Mixpanel's system architecture, you can read

about it here.

In order to convert data from row format to a columnar format, Mixpanel has a service

called Compacter.

Vijay Jayaram was the Principal Tech Lead Manager of the Performance team at

Mixpanel, and he wrote a great blog post on technical challenges the company faced

when scaling the Compacter service and how they overcame them.

Here’s a Summary

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db2x1bW4tb3JpZW50ZWRfREJNUyNSb3ctb3JpZW50ZWRfc3lzdGVtcyIsInBvc3RfaWQiOiJjNDllYTdiZS03MzE2LTQ5ZjAtYmJkYi0yMjI4YWNhZWZiNDciLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY0LjU0MiwiaXNzIjoib3JjaGlkIn0.B_ZrbpOZvrZS3JwKGW0O8Sx74UIebg2C4xbnkWlJkWE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db2x1bW4tb3JpZW50ZWRfREJNUyNDb2x1bW4tb3JpZW50ZWRfc3lzdGVtcyIsInBvc3RfaWQiOiJjNDllYTdiZS03MzE2LTQ5ZjAtYmJkYi0yMjI4YWNhZWZiNDciLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY0LjU0MiwiaXNzIjoib3JjaGlkIn0.tgrF98JjnG0pUagL5mzyKEFD8e9ZEVBPjJj23eCC3xA
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9MYW1iZGFfYXJjaGl0ZWN0dXJlIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.VF1njXdgTNbqvZV4EcMieHiaiUP4VVUHpMAfTT-0lnE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21peHBhbmVsLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOC8wNi9TeXN0ZW0tYXJjaGl0ZWN0dXJlX0p1bmUyMDE4LnBkZiIsInBvc3RfaWQiOiJjNDllYTdiZS03MzE2LTQ5ZjAtYmJkYi0yMjI4YWNhZWZiNDciLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY0LjU0MiwiaXNzIjoib3JjaGlkIn0.h3XRxJ7Ze2n5N13mylLwNAdOIga5cWBdESAuuj61ghE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLm1peHBhbmVsLmNvbS9wb3dlci1vZi0yLWNob2ljZXMtaW4tcHJhY3RpY2UtYjYwOTcwMjBkZmFkIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.265VW2wOx2PAfrtPiPwrrjdDuPn9Co8Snwsfqk3Dg_g
http://www.quastor.org

End-user devices with a Mixpanel tracker send event data to Mixpanel’s API and these

events are pushed onto queues.

This data gets pushed onto Mixpanel’s storage system, where storage nodes will write

the events to disk using a row-oriented format.

Then, the Compacter service will convert the data from row format to columnar format,

making it faster to query.

Given the nature of the work, the Compacter service is very computationally expensive.

It runs in an autoscaling nodepool on Google Kubernetes Engine.

When a storage node has a row file of a certain size/age, it will send a request to a

randomly selected compacter node to convert it. The compacter node will then return a

handle to the resulting columnar file.

If a compacter node has too many requests, then it’ll load shed and return an error. The

storage node will retry after a backoff period.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

A Skew Problem

Mixpanel engineers were having a great deal of trouble scaling the compacter in time to

absorb the spikes in load. The compacter service failed to autoscale and this resulted in a

spike in errors (as storage node requests were getting shedded and the retries were also

getting shedded).

Engineers would have to manually set the autoscaler’s minimum number of nodes to a

higher number to deal with the load. This resulted in a waste of engineer time and also

inefficient provisioning.

When Mixpanel looked at the average utilization of nodes in the compacter service, they

expected it to be at 80-90%. This would mean that the compute provisioned in the

service was being used efficiently.

However, they found that average CPU utilization was ~40%. They checked the median

utilization and the 90th percentile utilization to find that while median utilization was

low, the 90th percentile utilization was near 80%.

This meant that half the compacter nodes provisioned were doing little work, while the

top 10% of nodes were maxed out.

This was why the autoscaling was messed up, because the autoscaling algorithm was

using the average utilization to make its scaling decisions.

Cause for Skew

Engineers were confused about why there was a skew since the storage nodes were

randomly selecting compacter nodes based on a uniform random distribution

(Randomized Static load balancing). Each compacter node was equally likely to be

selected for a row-to-column conversion job.

However, because the individual jobs had a very uneven distribution in terms of

computational load, this caused a large work skew between the compacter nodes.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Mb2FkX2JhbGFuY2luZ18oY29tcHV0aW5nKSNSYW5kb21pemVkX3N0YXRpYyIsInBvc3RfaWQiOiJjNDllYTdiZS03MzE2LTQ5ZjAtYmJkYi0yMjI4YWNhZWZiNDciLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY0LjU0MiwiaXNzIjoib3JjaGlkIn0.8qUR-P-sr-bq0zO3C4UwdS0icSeub6mc2etR7p8ZYYs
http://www.quastor.org

Mixpanel has a vast range of customers, from startups with thousands of events per day

to large companies with billions of events per day.

This meant that the individual jobs were distributed based on a power law, where the

largest jobs were significantly larger than the smallest jobs. Some compacter nodes were

getting significantly more time-consuming jobs than other nodes and this is what caused

the work skew between the nodes.

Having unequal load will also present problems for many other load balancing

algorithms as well, like Round Robin.

The Power of 2-Choices

Mixpanel considered several solutions to solve this including inserting a queue between

the storage nodes and compacters or inserting a more complex load balancing service.

You can check out the full post to read about these options.

They went with a far simpler solution. They used a popular strategy called The Power of

2-Choices, which uses randomized load balancing.

Instead of the storage nodes randomly picking 1 compacter, they randomly pick 2

compacter nodes. Then, they ask each node for its current load and send the request to

the less loaded of the two.

There’s been quite a few papers on this strategy, and it’s been found to drastically reduce

the maximum load over having just one choice. It’s used quite frequently with load

balancers like Nginx. Mixpanel wrote some quick Python simulations to confirm their

intuition about how The Power of 2-Choices worked.

Implementing this into their system was extremely easy and it ended up massively

closing the gap between the median utilization and the 90th percentile utilization.

Average utilization increased to 90% and the error rate dropped to nearly 0 in steady

state since the compacters rarely had to shed load.

For more details, you can read the full summary here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Qb3dlcl9sYXciLCJwb3N0X2lkIjoiYzQ5ZWE3YmUtNzMxNi00OWYwLWJiZGItMjIyOGFjYWVmYjQ3IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NC41NDIsImlzcyI6Im9yY2hpZCJ9.tbozUooq8-bHWkla6pO4s0X8x-KeUO6MYopmcAMubm0
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLm1peHBhbmVsLmNvbS9wb3dlci1vZi0yLWNob2ljZXMtaW4tcHJhY3RpY2UtYjYwOTcwMjBkZmFkIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.265VW2wOx2PAfrtPiPwrrjdDuPn9Co8Snwsfqk3Dg_g
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2llZWV4cGxvcmUuaWVlZS5vcmcvZG9jdW1lbnQvOTYzNDIwIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.QBKrN9N6VI7XgNdoRzX1Pd2ApOu3XF3wEJp7S91mpOs
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2llZWV4cGxvcmUuaWVlZS5vcmcvZG9jdW1lbnQvOTYzNDIwIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.QBKrN9N6VI7XgNdoRzX1Pd2ApOu3XF3wEJp7S91mpOs
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5lZWNzLmhhcnZhcmQuZWR1L35taWNoYWVsbS9wb3N0c2NyaXB0cy9oYW5kYm9vazIwMDEucGRmIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.2xHich3tfIpnDeRlDf7-zBgvDbGUcUSIAGauwg-AxM8
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3d3dy5uZ2lueC5jb20vYmxvZy9uZ2lueC1wb3dlci1vZi10d28tY2hvaWNlcy1sb2FkLWJhbGFuY2luZy1hbGdvcml0aG0vIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.7iV7yzIBSh2NCP0Dp1XD_N3ugSufMpvH8X6vF_dChs8
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2dpdGh1Yi5jb20vcmFuaWMvbG9hZGJhbGFuY2luZy9ibG9iL21hc3Rlci9tYWluLnB5IiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.gH_a0jfse-K24sWYrfFGVHc56baS873P3Gx9shwB_EY
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuZ2luZWVyaW5nLm1peHBhbmVsLmNvbS9wb3dlci1vZi0yLWNob2ljZXMtaW4tcHJhY3RpY2UtYjYwOTcwMjBkZmFkIiwicG9zdF9pZCI6ImM0OWVhN2JlLTczMTYtNDlmMC1iYmRiLTIyMjhhY2FlZmI0NyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjQuNTQyLCJpc3MiOiJvcmNoaWQifQ.265VW2wOx2PAfrtPiPwrrjdDuPn9Co8Snwsfqk3Dg_g
http://www.quastor.org

How Pinterest Load Tests Their Database

Pinterest is a social media service with over 430 million monthly active users. The

company relies on advertising for revenue, where they show users promoted posts that

are served based on a real time ad auction.

In order to store and serve all of their reporting metrics, Pinterest relies on Apache

Druid - an open source, column-oriented, distributed data store that’s written in Java.

Druid is commonly used for OLAP (analytics workloads) and it’s designed to ingest

massive amounts of event data and then provide low latency, analytics queries on the

ingested data. Druid is also used at Netflix, Twitter, Walmart, Airbnb and many other

companies.

To get an idea of how Druid works, you can split its architecture into three components:

the query nodes, data nodes and deep storage.

Deep storage is where the company stores all their data permanently, like AWS S3 or

HDFS.

Druid connects with the company’s deep storage and indexes the company’s data into

Druid data nodes for fast analytical queries. New data can also be ingested through the

data nodes and Druid will then write it to deep storage.

In order to make analytical queries performant, the data stored in Druid's data nodes is

stored in a columnar format. You can read more about this here.

Clients can send their queries (in SQL or JSON) for Druid through the query nodes.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9SZWFsLXRpbWVfYmlkZGluZyIsInBvc3RfaWQiOiI4ZmQwMDRmMi1lOTZiLTQwZjctYmUyMC00ZDE1MTkwMzE5NzUiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY1LjEzNSwiaXNzIjoib3JjaGlkIn0.x3iHN7-iZj072R7ufHhLJDyxcI-yRc9kem9MlRtL1mU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9BcGFjaGVfRHJ1aWQiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzUsImlzcyI6Im9yY2hpZCJ9.Swm1KkANpZV7lGTMRMZAaB9pjHsIG_TXxa1KCbBf_mU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9BcGFjaGVfRHJ1aWQiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzUsImlzcyI6Im9yY2hpZCJ9.Swm1KkANpZV7lGTMRMZAaB9pjHsIG_TXxa1KCbBf_mU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db2x1bW4tb3JpZW50ZWRfREJNUyNDb2x1bW4tb3JpZW50ZWRfc3lzdGVtcyIsInBvc3RfaWQiOiI4ZmQwMDRmMi1lOTZiLTQwZjctYmUyMC00ZDE1MTkwMzE5NzUiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY1LjEzNSwiaXNzIjoib3JjaGlkIn0.2E60wzMFvfTSDa7-7T_pfddsuSOKigBFfE7TZe7ElK8
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9PbmxpbmVfYW5hbHl0aWNhbF9wcm9jZXNzaW5nIiwicG9zdF9pZCI6IjhmZDAwNGYyLWU5NmItNDBmNy1iZTIwLTRkMTUxOTAzMTk3NSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjUuMTM1LCJpc3MiOiJvcmNoaWQifQ.NnMRFsBzQOJ1X_rQrrcBx7zNmSQtOQnNTt6cfIaCHak
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RydWlkLmFwYWNoZS5vcmcvZG9jcy9sYXRlc3QvZGVzaWduL3NlZ21lbnRzLmh0bWwiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzUsImlzcyI6Im9yY2hpZCJ9.65ZXgZ4q4v-hnxq5munyhZF9XF5LFEdPp6cvyOWe66E
http://www.quastor.org

These components are broken down into different services that can be configured and

scaled independently.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

During the holiday months, Pinterest typically gets a big spike in traffic. In order to deal

with this, teams at the company perform extensive load testing in the months prior.

Engineers on the Real-Time Analytics team at Pinterest wrote a great blog post on the

process they go through for load testing Druid.

Here’s a summary

When load testing Druid, engineers are looking to verify several areas

1. Queries - The service should be able to handle the expected increase in

queries per second and do so within the latency requirements specified in the

service level agreement (SLA).

2. Ingestion - The real-time ingestion capabilities should be able to handle the

increase in data. Druid should be able to take in all the data and write it to the

data nodes and deep storage with low ingestion lag and a low number of failed

writes.

3. Data Size - The storage system should have sufficient capacity to handle the

increased data volume.

We’ll go through each of these and talk about how Pinterest tests them.

Setting up the Testing Environment

When load testing their Druid system, Pinterest can either do so with generated queries

or with real production queries.

With generated queries, queries are created based on the current data set in Druid. This

is fairly simple to run and does not require any preparation. However, it may not

accurately show how the system will behave in production scenarios since the generated

queries might not be representative of a real world workload (in terms of which data is

accessed, query types, edge cases).

Another option is to capture real production queries and re-run these queries during

testing. This is more involved as queries need to be captured and then updated for the

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vcGludGVyZXN0LWVuZ2luZWVyaW5nL3BpbnRlcmVzdC1kcnVpZC1ob2xpZGF5LWxvYWQtdGVzdGluZy00YmQ5YjllZTEzMDgiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzUsImlzcyI6Im9yY2hpZCJ9.eSJRlslNAd72OazqBsXVlkKlflVmy-EdliRvVUgOyXE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9TZXJ2aWNlLWxldmVsX2FncmVlbWVudCIsInBvc3RfaWQiOiI4ZmQwMDRmMi1lOTZiLTQwZjctYmUyMC00ZDE1MTkwMzE5NzUiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY1LjEzNSwiaXNzIjoib3JjaGlkIn0.ePigo9zURZ7kMq1g4P9WtSL5Jr0M4flo3ljqCi-nA0g
http://www.quastor.org

changes in the dataset/timeframe. However, this is more reflective of what Druid will

experience.

Pinterest moved ahead with using real production queries and implemented query

capture using Druid’s logging feature that automatically logs any query that is being sent

to a Druid broker host (you send your query to a Query Server which contains a broker

host).

Engineers don’t conduct testing on the production environment, as that could adversely

affect users. Instead, they create a test environment that’s as close to production as

possible.

They replicate the Druid setup of brokers, coordinators, and more and also make sure to

use the same host machine types, configurations, pool size, etc.

Druid relies on an external database for metadata storage (data on configuration, audit,

usage information, etc.) and it supports Derby, MySQL and Postgres. Pinterest uses

MySQL.

Therefore, they use a MySQL dump to create a copy of all the metadata stored in the

production environment and add that to a MySQL instance in the test environment.

They spin up data nodes in the test environment that read from deep storage and index

data from the past few weeks/months.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RydWlkLmFwYWNoZS5vcmcvZG9jcy9sYXRlc3QvZGVzaWduL2Jyb2tlci5odG1sIiwicG9zdF9pZCI6IjhmZDAwNGYyLWU5NmItNDBmNy1iZTIwLTRkMTUxOTAzMTk3NSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjUuMTM1LCJpc3MiOiJvcmNoaWQifQ.LfuhLMvR9A0foAVRP8-vR4JkiuZNgVPBnbsNZcjSbTs
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RydWlkLmFwYWNoZS5vcmcvZG9jcy9sYXRlc3QvZGVzaWduL2Jyb2tlci5odG1sIiwicG9zdF9pZCI6IjhmZDAwNGYyLWU5NmItNDBmNy1iZTIwLTRkMTUxOTAzMTk3NSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjUuMTM2LCJpc3MiOiJvcmNoaWQifQ.jvKvM2fJbkqDpJ0FO0WRQJqp0nQRSsTpaXA6BupICB4
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RydWlkLmFwYWNoZS5vcmcvZG9jcy9sYXRlc3QvZGVzaWduL2Nvb3JkaW5hdG9yLmh0bWwiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzYsImlzcyI6Im9yY2hpZCJ9.PeoZqIkRL0loBJLTMrDoa3d2y_jcmG-mL_81gETcLJw
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RydWlkLmFwYWNoZS5vcmcvZG9jcy9sYXRlc3QvZGVwZW5kZW5jaWVzL21ldGFkYXRhLXN0b3JhZ2UuaHRtbCIsInBvc3RfaWQiOiI4ZmQwMDRmMi1lOTZiLTQwZjctYmUyMC00ZDE1MTkwMzE5NzUiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY1LjEzNiwiaXNzIjoib3JjaGlkIn0.GrZct4SMglv6LwHvjyoCD89hua-1PfFvsb6sKGxR_GI
http://www.quastor.org

The testing service loads historical production queries from the log files in the

production environment and sends them to the brokers in the test environment for

execution. They ramp up the queries per second to test what they expect for holiday

traffic.

Evaluating Query Load

Pinterest runs the real production queries on the test environment and looks at several

metrics like

● 99th percentile latency of the queries

● CPU usage of the brokers

● Peak queries per second

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Using these tests, they can find and address bottlenecks in Druid around the query and

data services and adjust how much compute is dedicated for these components.

Some changes can be done quickly while others can take hours. Increasing the number

of machines in the query services can be done quickly, whereas increasing the number of

data replicas takes time since data needs to be indexed and loaded from deep storage.

Handling Increase in Data Ingestion

Testing Data Ingestion is quite similar to testing queries per second. Pinterest sets up a

test environment with the same capacity, configuration, etc. as the production

environment.

The main difference is that the Real-Time Analytics team now needs some help from

client teams who generate the ingested data to also send additional events that mimic

production traffic.

When reviewing ingestion traffic, the Pinterest team looks at

● Ingestion lag

● Number of successful/rejected events

● General system health

And more.

They also make sure to validate the ingested data and make sure it’s being written

correctly.

Handling Increase in Data Volume

Evaluating if the system can handle the increase in data volume is the simplest and

quickest check.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

For this, they look at the Druid Web Console, where they can see all the data nodes and

current capacity. They estimate the amount of additional data that will be stored over

the holiday period and adjust for that.

Results

From the testing, Pinterest found that they were able to handle the additional traffic

expected during the holiday period. They saw that the broker pool may need additional

hosts if traffic meets a certain threshold, so they made a note that the pool size may need

to be increased.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2RydWlkLmFwYWNoZS5vcmcvZG9jcy9sYXRlc3Qvb3BlcmF0aW9ucy9kcnVpZC1jb25zb2xlLmh0bWwiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzYsImlzcyI6Im9yY2hpZCJ9.lrf6iP__TuabwZILR7Xnwk1lheYd6RmrpmTSwdUT5_o
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL21lZGl1bS5jb20vcGludGVyZXN0LWVuZ2luZWVyaW5nL3BpbnRlcmVzdC1kcnVpZC1ob2xpZGF5LWxvYWQtdGVzdGluZy00YmQ5YjllZTEzMDgiLCJwb3N0X2lkIjoiOGZkMDA0ZjItZTk2Yi00MGY3LWJlMjAtNGQxNTE5MDMxOTc1IiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2NS4xMzYsImlzcyI6Im9yY2hpZCJ9.pBk6VCPWnc49Q7Coj8cwGmp2eX9x1uH7RgLdIZI7CvI
http://www.quastor.org

How Facebook Transfers Exabytes of Data Across

Their Data Centers Globally

In order to serve their 3 billion users, Facebook runs one of the largest private clouds in

the world. They have massive data centers spread out across the globe and they’ve

invested tens of billions of dollars in their infrastructure.

One big challenge when operating at this scale is distributing data across the system.

Objects like executable files, search indexes, AI models and containers are a few

examples of files that Facebook needs to send to many different machines globally.

Each of these files ranges from a couple of megabytes to a few terabytes and they’re split

into small chunks. These chunks need to be transferred between Facebook machines

with low latency and a very high throughput (millions of machines may need to quickly

read a certain object).

These files are stored on Facebook’s distributed data store and client machines can read

the files from there. However, having all the client machines read from this data store

quickly leads to scalability issues.

There are far too many machines requesting files and the transfer speeds would be too

slow. Instead, there needs to be a caching system built on top of the distributed data

store that can facilitate easy transfer of this data.

To build this system, Facebook tried multiple approaches with varying degrees of

centralization. They first tried a highly centralized system with a hierarchical caching

layer but that led to scalability issues. They also tried a decentralized approach with the

BitTorrent protocol but that was too complex to manage.

Eventually, they settled on a balance between these two approaches with Owl, a system

for high-fanout distribution of data objects across Meta’s private cloud. Owl distributes

over 700 petabytes of data per day to over 10 million unique client machines across

Facebook’s data centers.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Despite serving over 700 petabytes of data per day, only ~40 petabytes of data is read on

average from the underlying data store. This means that Owl has a ~95% cache hit rate

and is able to massively reduce the amount of read traffic sent to the underlying data

store.

Engineers at Facebook published a great paper where they talked about their prior data

distribution systems (hierarchical caching, bittorrent and more), lessons learned and

the architecture/implementation details behind Owl.

Here’s a Summary

Facebook engineers needed a way to distribute large objects across their private cloud.

The task can be described by 3 dimensions

● Scale - The same object could be read by anywhere from a handful of client

machines to millions of clients around the world.

● Size - Objects range in size from 1 megabyte to a few terabytes. Objects are

split up into chunks and stored in a distributed storage system.

● Hotness - All the client machines may request the object within a few seconds

of each other, or their reads could be spread out over a few hours

Distributing these files must also be done efficiently and reliably. To be considered

reliable, the caching system must successfully complete a large percentage of download

requests within a certain latency. It should also not be too burdensome for engineers to

maintain the system.

Facebook tried several approaches with varying amounts of centralization in the control

plane and the data plane. The data plane are the machines where the cached data is

stored while the machines in the control plane determine which files the data plane

nodes should cache/delete and how requests should be routed to nodes in the data

plane.

Here are a couple of Facebook’s initial approaches.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3Jlc2VhcmNoLmZhY2Vib29rLmNvbS9wdWJsaWNhdGlvbnMvb3dsLXNjYWxlLWFuZC1mbGV4aWJpbGl0eS1pbi1kaXN0cmlidXRpb24tb2YtaG90LWNvbnRlbnQvIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.TFEcjLhlI3s1oDaXs80HmcF2L64bB_55iHz9aP7KqRE
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db250cm9sX3BsYW5lIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.xJKZ3u4sdQbaGAi3v7YIGU_YA3l0se8QFKcYyoCu1q4
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db250cm9sX3BsYW5lIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.xJKZ3u4sdQbaGAi3v7YIGU_YA3l0se8QFKcYyoCu1q4
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9EYXRhX3BsYW5lIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.NZ95yNnwtzgiC9du-Hm1VDeJueOtxXh8EsycFtsw91Q
http://www.quastor.org

Hierarchical caching

The first attempt was to add a hierarchical cache system in front of their distributed data

stores. This is a pretty standard solution and also relatively simple to implement.

Facebook set aside a dedicated pool of machines to use as the caching layer.

When a client machine needs a certain file, their first request goes to a first-level cache.

If there’s a cache-miss, then the first-level will request the data from the next level

caches in the hierarchy (second-level, third-level, and so on). The final layer is the

distributed data store itself.

The data would be stored/evicted in these hierarchies so that the first-level cache held

the most requested (hottest) data.

The issue with this approach is that it was too difficult for Facebook to handle load

spikes for particular pieces of content. Machines in the caching system would get

overloaded and start to throttle requests from the clients and Facebook had trouble

provisioning capacity appropriately.

They would either provision for the steady state and miss load spikes or they would

provision for load spikes and waste compute/servers.

The centralization of the data plane on the dedicated pool of machines was making the

system too slow to scale.

Bittorrent

To address these scaling issues, Facebook built a second solution based on the bittorrent

protocol, a very popular protocol for peer-to-peer file sharing.

With this system, any client that wants to download data becomes a peer in the system

(so there were millions of peers). Clients would dedicate whatever resources they had

available to sharing their downloaded files to other peers in the network. Trackers

maintained a list of all the peers and which file chunks were stored on which peers.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9EYXRhX3BsYW5lIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.NZ95yNnwtzgiC9du-Hm1VDeJueOtxXh8EsycFtsw91Q
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9CaXRUb3JyZW50IiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.xlMHybtzEwzqn5ZydTCFbV-tt-4N25IE8ZljPHkbXkg
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9CaXRUb3JyZW50IiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.xlMHybtzEwzqn5ZydTCFbV-tt-4N25IE8ZljPHkbXkg
http://www.quastor.org

When a new peer wants a certain data chunk, it can get a list of other peers that are

sharing that chunk from the trackers. After downloading the chunk, that new peer can

start sharing that chunk as well.

This scaled much better than hierarchical caching due to the peer-to-peer nature of the

system. When there was a load spike for a particular piece of content, the number of

peers sharing that content would automatically increase at a similar rate as the demand.

However, each peer in this system was making its own individual decision on which data

to request and share. A machine would only become a peer for a certain file if the

machine needed to download that file for its own purposes.

This decentralization of the control plane led to an inefficient allocation of resources

where cold/stale data weren’t getting evicted from the system and hot data wasn’t being

replicated at the optimal level.

The decentralization also made it very hard to operate and debug. Engineers could not

get a clear picture of health and status without aggregating data from a large number of

peers.

Owl

Facebook then designed a system that combined the best of both of these approaches

with Owl.

Owl has a decentralized data plane and a centralized control plane. Data is stored in a

decentralized manner (similar to bittorrent) on all the client machines that are

downloading from the system. However, decisions around which client stores what

chunk and how data is cached on the various peers are managed more centrally.

To accomplish this, Owl has 3 components

● Peer - A peer is a library that’s linked with a client machine that wants to

download data from Owl. As the machine is downloading the file, it can share

data with other client machines (also peers) that request the file. When a peer

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9Db250cm9sX3BsYW5lIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.xJKZ3u4sdQbaGAi3v7YIGU_YA3l0se8QFKcYyoCu1q4
http://www.quastor.org

wants to download a file, it asks the Owl Tracker (explained below) where to

get the data from.

● Superpeer - Superpeers are dedicated machines that can cache and serve data

but aren’t linked to a client process. Instead, the entire machine is dedicated

to caching and sharing data to other peers/superpeers. Owl Trackers will

manage what data gets stored on the superpeers.

● Tracker - The trackers are the brain of the system. They tell the peers and

superpeers what data to cache/evict based on the entire state of the system.

Trackers have a global view of what data is being requested so they can

intelligently manage the system.

When a client machine wants to download a file from Owl, it will use the Owl library to

send a remote procedure call for the data to a tracker.

The tracker has a global view of state and it will return information on the optimal

peer/superpeer that has the data and can share it with the client. The client can then

download the data from that node and become a peer itself.

The selection policy for how the tracker selects the peer/superpeer to share the data

depends on a variety of factors like geographic distance, load, amount of the file that the

node has saved.

If none of the peers have the file, then the tracker can have a superpeer fetch the data

from the underlying data store. The superpeer can then share the data with the client

machine, making the client machine a peer that can share the file.

The default cache eviction policy is LRU where the least recently used files get evicted

when a peer’s storage is full. However many nodes also use a least rare policy where files

are evicted from a peer based on how many other peers have that file cached. A file that

is cached on many other peers will be evicted over a file cached on only a few peers.

The system can also be configured to use a hybrid policy of least-rare eviction for hot

data and LRU eviction for cold data.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9DYWNoZV9yZXBsYWNlbWVudF9wb2xpY2llcyNMZWFzdF9yZWNlbnRseV91c2VkXyhMUlUpIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.2vpJBWJ_Ahqd-9YgdEIyv4mB9n8RUmgn3IQRKxTlsVA
http://www.quastor.org

Owl has over 10 million peers and approximately 800 super peers. These are managed

by 112 tracker nodes.

This is just a brief overview of how Owl works. You can get way more more details on

sharding, security, fault tolerance and much more by reading the full paper.

Results

Facebook started Owl 2 years ago and since then they’ve seen 200x growth in the

amount of traffic Owl is getting. This growth came from replacing the prior systems and

taking on their load as well as organic adoption.

Despite this massive increase in traffic, the number of machines needed to run Owl (for

the superpeers and trackers) only increased by 4x. The decentralized nature of the data

plane (with peer-to-peer distribution) makes the system much easier to scale.

Owl is now handling over 700 petabytes of data per day and has over 10 million client

processes using the system. This amounts to a throughput of ~7 - 15 terabytes per

second of data that client processes are reading. With Owl, the amount of storage reads

that have to be served by the underlying distributed data store is less than 0.7 terabytes

per second.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3Jlc2VhcmNoLmZhY2Vib29rLmNvbS9wdWJsaWNhdGlvbnMvb3dsLXNjYWxlLWFuZC1mbGV4aWJpbGl0eS1pbi1kaXN0cmlidXRpb24tb2YtaG90LWNvbnRlbnQvIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.TFEcjLhlI3s1oDaXs80HmcF2L64bB_55iHz9aP7KqRE
http://www.quastor.org

During a typical day, Owl clients will read 700+ petabytes of data per day, but only ~40

petabytes will be read from the underlying data store, equating to a ~95% cache hit rate.

For more details, you can read the full paper here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL3Jlc2VhcmNoLmZhY2Vib29rLmNvbS9wdWJsaWNhdGlvbnMvb3dsLXNjYWxlLWFuZC1mbGV4aWJpbGl0eS1pbi1kaXN0cmlidXRpb24tb2YtaG90LWNvbnRlbnQvIiwicG9zdF9pZCI6IjRkOTRiMzIwLTNjODUtNGI0NC1hMzdlLWE1N2Y3OGFjNjQwMSIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuMDQ1LCJpc3MiOiJvcmNoaWQifQ.TFEcjLhlI3s1oDaXs80HmcF2L64bB_55iHz9aP7KqRE
http://www.quastor.org

How Dropbox maintains 3 Nines of Availability

Dropbox is a file hosting company that stores exabytes of data for their 700 million

users. The majority of their users are consumers but many enterprises also use

Dropbox’s storage solutions.

It’s extremely important that Dropbox meets various service level objectives (SLOs)

around availability, durability, security and more. Failing to meet these objectives

means unhappy users (increased churn, bad PR, fewer sign ups) and lost revenue from

enterprises who have service level agreements (SLAs) in their contracts with Dropbox.

The availability SLA in contracts is 99.9% uptime but Dropbox sets a higher internal bar

of 99.95% uptime. This translates to less than 21 minutes of downtime allowed per

month.

In order to meet their objectives, Dropbox has a rigorous process they execute whenever

an incident comes up. They’ve also developed a large amount of tooling around this

process to ensure that incidents are resolved as soon as possible.

Joey Beyda is a Senior Engineering Manager at Dropbox and Ross Delinger is a Site

Reliability Engineer. They wrote a great blog post on incident management at Dropbox

and how the company ensures great service for their users.

Here’s a Summary

With any incident, there’s 3 stages that engineers have to go through.

1. Detection - identify an issue and alert a responder

2. Diagnosis - the time it takes for responders to root-cause an issue and identify

a resolution approach.

3. Recovery - the time it takes to mitigate the issue for users once a resolution

approach is found.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Ryb3Bib3gudGVjaC9pbmZyYXN0cnVjdHVyZS9sZXNzb25zLWxlYXJuZWQtaW4taW5jaWRlbnQtbWFuYWdlbWVudCIsInBvc3RfaWQiOiI2NTc5MDNlYi1hN2UzLTQ3YjgtOTlmYi1hOWY4OTRkOTNmODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY3LjY0MiwiaXNzIjoib3JjaGlkIn0.ADCBqzNFwO_K7BbICTwXMOV_stXqqKjfB_nnXsjU-rg
http://www.quastor.org

Dropbox went into each of these stages and described the process and tooling they’ve

built.

Detection

Whenever there’s an incident around availability, durability, security, etc. it’s important

that Dropbox engineers are notified as soon as possible.

To accomplish this, Dropbox built Vortex, their server-side metrics and alerting system.

You can read a detailed blog post about the architecture of Vortex here. It provides an

ingestion latency on the order of seconds and has a 10 second sampling rate. This allows

engineers to be notified of any potential incident within tens of seconds of its beginning.

However, in order to be useful, Vortex needs well-defined metrics to alert on. These

metrics are often use-case specific, so individual teams at Dropbox will need to

configure them themselves.

To reduce the burden on service owners, Vortex provides a rich set of service, runtime

and host metrics that come baked in for teams.

Noisy alerts can be a big challenge, as they can cause alarm fatigue which will increase

the response time.

To address this, Dropbox built an alert dependency system into Vortex where service

owners can tie their alerts to other alerts and also silence a page if the problem is in

some common dependency. This helps on-call engineers avoid getting paged for issues

that are not actionable by them.

Diagnosis

In the diagnosis stage, engineers are trying to root-cause the issue and identify possible

resolution approaches.

To make this easier, Dropbox has built a ton of tooling to speed up common workflows

and processes.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Ryb3Bib3gudGVjaC9pbmZyYXN0cnVjdHVyZS9tb25pdG9yaW5nLXNlcnZlci1hcHBsaWNhdGlvbnMtd2l0aC12b3J0ZXgiLCJwb3N0X2lkIjoiNjU3OTAzZWItYTdlMy00N2I4LTk5ZmItYTlmODk0ZDkzZjgzIiwicHVibGljYXRpb25faWQiOiI3YTU4OGNiMS0xZGQ1LTQyMDEtOTk0NS1iMWIyY2RlNTViYWEiLCJ2aXNpdF90b2tlbiI6IjEzYWU5YjNlLTAyOTYtNDg0OC04NDFiLTM2YjNkM2E0YTI4YyIsImlhdCI6MTY2NDMwNDU2Ny42NDMsImlzcyI6Im9yY2hpZCJ9.McfrCdqMQkr8QueQXqR74G3-Hp62z5BRQuHPe0QRpZU
https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9BbGFybV9mYXRpZ3VlIiwicG9zdF9pZCI6IjY1NzkwM2ViLWE3ZTMtNDdiOC05OWZiLWE5Zjg5NGQ5M2Y4MyIsInB1YmxpY2F0aW9uX2lkIjoiN2E1ODhjYjEtMWRkNS00MjAxLTk5NDUtYjFiMmNkZTU1YmFhIiwidmlzaXRfdG9rZW4iOiIxM2FlOWIzZS0wMjk2LTQ4NDgtODQxYi0zNmIzZDNhNGEyOGMiLCJpYXQiOjE2NjQzMDQ1NjcuNjQzLCJpc3MiOiJvcmNoaWQifQ.pkbjjYYwsXrJrtaiL6N27Q8TZuPMlGQBDl0lwEGlgmI
http://www.quastor.org

The on-call engineer will usually have to pull in additional responders to help diagnose

the issue, so Dropbox added buttons in their internal service directory to immediately

page the on-call engineer for a certain service/team.

They’ve also built dashboards with Grafana that list data points that are valuable to

incident responders like

● Client and server-side error rates

● RPC latency

● Exception trends

● Queries Per Second

And more. Service owners can then build more nuanced dashboards that list

team-specific metrics that are important for diagnosis.

One of the highest signal tools Dropbox has for diagnosing issues is their exception

tracking infrastructure. It allows any service at Dropbox to emit stack traces to a central

store and tag them with useful metadata.

Developers can then view the exceptions within their services through a dashboard.

Recovery

Once a resolution approach is found, the recovery process consists of executing that

approach and resolving the incident.

To make this as fast as possible, Dropbox asked their engineers the following question -

“Which incident scenarios for your system would take more than 20 minutes to

recover from?”.

They picked the 20 minute mark since their availability targets were no more than 21

minutes of downtime per month.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

http://www.quastor.org

Asking this question brought up many recovery scenarios, each with a different

likelihood of occurring. Dropbox had teams rank the most likely recovery scenarios and

then they tried to shorten these scenarios.

Examples of recovery scenarios that had to be shortened were

● Promoting standby database replicas could take more than 20 minutes - If

Dropbox lost enough primary replicas during a failure, then they might be

forced to break their availability target if they had to promote a standby

replica to primary. Engineers solved this by improving the tooling that

handled database promotions.

● Experiments and Feature Gates could be hard to roll back - If there was an

experimentation-related issue, this could take longer than 20 minutes to roll

back and resolve. To address this, engineers ensured all experiments and

feature gates had a clear owner and that they provided rollback capabilities

and a playbook to on-call engineers.

For more details, you can read the full blog post here.

Quastor Newsletter Archive - Get 2 Articles Weekly at Quastor.org

https://flight.beehiiv.net/v2/clicks/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1cmwiOiJodHRwczovL2Ryb3Bib3gudGVjaC9pbmZyYXN0cnVjdHVyZS9sZXNzb25zLWxlYXJuZWQtaW4taW5jaWRlbnQtbWFuYWdlbWVudCIsInBvc3RfaWQiOiI2NTc5MDNlYi1hN2UzLTQ3YjgtOTlmYi1hOWY4OTRkOTNmODMiLCJwdWJsaWNhdGlvbl9pZCI6IjdhNTg4Y2IxLTFkZDUtNDIwMS05OTQ1LWIxYjJjZGU1NWJhYSIsInZpc2l0X3Rva2VuIjoiMTNhZTliM2UtMDI5Ni00ODQ4LTg0MWItMzZiM2QzYTRhMjhjIiwiaWF0IjoxNjY0MzA0NTY3LjY0MywiaXNzIjoib3JjaGlkIn0.-VuNySjDbCA9veOPQAF7PMy3FtD8YCtBM3XUVyQqGdw
http://www.quastor.org

